Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
tpeq2
Next ⟩
tpeq3
Metamath Proof Explorer
Ascii
Unicode
Theorem
tpeq2
Description:
Equality theorem for unordered triples.
(Contributed by
NM
, 13-Sep-2011)
Ref
Expression
Assertion
tpeq2
⊢
A
=
B
→
C
A
D
=
C
B
D
Proof
Step
Hyp
Ref
Expression
1
preq2
⊢
A
=
B
→
C
A
=
C
B
2
1
uneq1d
⊢
A
=
B
→
C
A
∪
D
=
C
B
∪
D
3
df-tp
⊢
C
A
D
=
C
A
∪
D
4
df-tp
⊢
C
B
D
=
C
B
∪
D
5
2
3
4
3eqtr4g
⊢
A
=
B
→
C
A
D
=
C
B
D