Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The ` # ` (set size) function
Proper unordered pairs and triples (sets of size 2 and 3)
tpf
Next ⟩
tpfo
Metamath Proof Explorer
Ascii
Unicode
Theorem
tpf
Description:
A function into a (proper) triple.
(Contributed by
AV
, 20-Jul-2025)
Ref
Expression
Hypotheses
tpf1o.f
⊢
F
=
x
∈
0
..^
3
⟼
if
x
=
0
A
if
x
=
1
B
C
tpf.t
⊢
T
=
A
B
C
Assertion
tpf
⊢
A
∈
V
∧
B
∈
V
∧
C
∈
V
→
F
:
0
..^
3
⟶
T
Proof
Step
Hyp
Ref
Expression
1
tpf1o.f
⊢
F
=
x
∈
0
..^
3
⟼
if
x
=
0
A
if
x
=
1
B
C
2
tpf.t
⊢
T
=
A
B
C
3
tpid1g
⊢
A
∈
V
→
A
∈
A
B
C
4
3
3ad2ant1
⊢
A
∈
V
∧
B
∈
V
∧
C
∈
V
→
A
∈
A
B
C
5
tpid2g
⊢
B
∈
V
→
B
∈
A
B
C
6
5
3ad2ant2
⊢
A
∈
V
∧
B
∈
V
∧
C
∈
V
→
B
∈
A
B
C
7
tpid3g
⊢
C
∈
V
→
C
∈
A
B
C
8
7
3ad2ant3
⊢
A
∈
V
∧
B
∈
V
∧
C
∈
V
→
C
∈
A
B
C
9
6
8
ifcld
⊢
A
∈
V
∧
B
∈
V
∧
C
∈
V
→
if
x
=
1
B
C
∈
A
B
C
10
4
9
ifcld
⊢
A
∈
V
∧
B
∈
V
∧
C
∈
V
→
if
x
=
0
A
if
x
=
1
B
C
∈
A
B
C
11
10
2
eleqtrrdi
⊢
A
∈
V
∧
B
∈
V
∧
C
∈
V
→
if
x
=
0
A
if
x
=
1
B
C
∈
T
12
11
adantr
⊢
A
∈
V
∧
B
∈
V
∧
C
∈
V
∧
x
∈
0
..^
3
→
if
x
=
0
A
if
x
=
1
B
C
∈
T
13
12
1
fmptd
⊢
A
∈
V
∧
B
∈
V
∧
C
∈
V
→
F
:
0
..^
3
⟶
T