Metamath Proof Explorer


Theorem tpf

Description: A function into a (proper) triple. (Contributed by AV, 20-Jul-2025)

Ref Expression
Hypotheses tpf1o.f F = x 0 ..^ 3 if x = 0 A if x = 1 B C
tpf.t T = A B C
Assertion tpf A V B V C V F : 0 ..^ 3 T

Proof

Step Hyp Ref Expression
1 tpf1o.f F = x 0 ..^ 3 if x = 0 A if x = 1 B C
2 tpf.t T = A B C
3 tpid1g A V A A B C
4 3 3ad2ant1 A V B V C V A A B C
5 tpid2g B V B A B C
6 5 3ad2ant2 A V B V C V B A B C
7 tpid3g C V C A B C
8 7 3ad2ant3 A V B V C V C A B C
9 6 8 ifcld A V B V C V if x = 1 B C A B C
10 4 9 ifcld A V B V C V if x = 0 A if x = 1 B C A B C
11 10 2 eleqtrrdi A V B V C V if x = 0 A if x = 1 B C T
12 11 adantr A V B V C V x 0 ..^ 3 if x = 0 A if x = 1 B C T
13 12 1 fmptd A V B V C V F : 0 ..^ 3 T