Metamath Proof Explorer


Theorem tpf1o

Description: A bijection onto a (proper) triple. (Contributed by AV, 21-Jul-2025)

Ref Expression
Hypotheses tpf1o.f F = x 0 ..^ 3 if x = 0 A if x = 1 B C
tpf.t T = A B C
Assertion tpf1o A V B V C V T = 3 F : 0 ..^ 3 1-1 onto T

Proof

Step Hyp Ref Expression
1 tpf1o.f F = x 0 ..^ 3 if x = 0 A if x = 1 B C
2 tpf.t T = A B C
3 1 2 tpfo A V B V C V F : 0 ..^ 3 onto T
4 3 adantr A V B V C V T = 3 F : 0 ..^ 3 onto T
5 3nn0 3 0
6 hashfzo0 3 0 0 ..^ 3 = 3
7 5 6 ax-mp 0 ..^ 3 = 3
8 eqcom T = 3 3 = T
9 8 biimpi T = 3 3 = T
10 9 adantl A V B V C V T = 3 3 = T
11 7 10 eqtrid A V B V C V T = 3 0 ..^ 3 = T
12 fzofi 0 ..^ 3 Fin
13 12 a1i A V B V C V 0 ..^ 3 Fin
14 tpfi A B C Fin
15 2 14 eqeltri T Fin
16 15 a1i T = 3 T Fin
17 hashen 0 ..^ 3 Fin T Fin 0 ..^ 3 = T 0 ..^ 3 T
18 13 16 17 syl2an A V B V C V T = 3 0 ..^ 3 = T 0 ..^ 3 T
19 11 18 mpbid A V B V C V T = 3 0 ..^ 3 T
20 15 a1i A V B V C V T = 3 T Fin
21 fofinf1o F : 0 ..^ 3 onto T 0 ..^ 3 T T Fin F : 0 ..^ 3 1-1 onto T
22 4 19 20 21 syl3anc A V B V C V T = 3 F : 0 ..^ 3 1-1 onto T