Metamath Proof Explorer


Theorem tpf1ofv0

Description: The value of a one-to-one function onto a triple at 0. (Contributed by AV, 20-Jul-2025)

Ref Expression
Hypothesis tpf1o.f F = x 0 ..^ 3 if x = 0 A if x = 1 B C
Assertion tpf1ofv0 A V F 0 = A

Proof

Step Hyp Ref Expression
1 tpf1o.f F = x 0 ..^ 3 if x = 0 A if x = 1 B C
2 1 a1i A V F = x 0 ..^ 3 if x = 0 A if x = 1 B C
3 iftrue x = 0 if x = 0 A if x = 1 B C = A
4 3 adantl A V x = 0 if x = 0 A if x = 1 B C = A
5 3nn 3
6 lbfzo0 0 0 ..^ 3 3
7 5 6 mpbir 0 0 ..^ 3
8 7 a1i A V 0 0 ..^ 3
9 id A V A V
10 2 4 8 9 fvmptd A V F 0 = A