Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The ` # ` (set size) function
Proper unordered pairs and triples (sets of size 2 and 3)
tpf1ofv1
Next ⟩
tpf1ofv2
Metamath Proof Explorer
Ascii
Unicode
Theorem
tpf1ofv1
Description:
The value of a one-to-one function onto a triple at 1.
(Contributed by
AV
, 20-Jul-2025)
Ref
Expression
Hypothesis
tpf1o.f
⊢
F
=
x
∈
0
..^
3
⟼
if
x
=
0
A
if
x
=
1
B
C
Assertion
tpf1ofv1
⊢
B
∈
V
→
F
⁡
1
=
B
Proof
Step
Hyp
Ref
Expression
1
tpf1o.f
⊢
F
=
x
∈
0
..^
3
⟼
if
x
=
0
A
if
x
=
1
B
C
2
1
a1i
⊢
B
∈
V
→
F
=
x
∈
0
..^
3
⟼
if
x
=
0
A
if
x
=
1
B
C
3
ax-1ne0
⊢
1
≠
0
4
3
neii
⊢
¬
1
=
0
5
eqeq1
⊢
x
=
1
→
x
=
0
↔
1
=
0
6
4
5
mtbiri
⊢
x
=
1
→
¬
x
=
0
7
6
iffalsed
⊢
x
=
1
→
if
x
=
0
A
if
x
=
1
B
C
=
if
x
=
1
B
C
8
iftrue
⊢
x
=
1
→
if
x
=
1
B
C
=
B
9
7
8
eqtrd
⊢
x
=
1
→
if
x
=
0
A
if
x
=
1
B
C
=
B
10
9
adantl
⊢
B
∈
V
∧
x
=
1
→
if
x
=
0
A
if
x
=
1
B
C
=
B
11
1nn0
⊢
1
∈
ℕ
0
12
3nn
⊢
3
∈
ℕ
13
1lt3
⊢
1
<
3
14
elfzo0
⊢
1
∈
0
..^
3
↔
1
∈
ℕ
0
∧
3
∈
ℕ
∧
1
<
3
15
11
12
13
14
mpbir3an
⊢
1
∈
0
..^
3
16
15
a1i
⊢
B
∈
V
→
1
∈
0
..^
3
17
id
⊢
B
∈
V
→
B
∈
V
18
2
10
16
17
fvmptd
⊢
B
∈
V
→
F
⁡
1
=
B