Metamath Proof Explorer


Theorem tpf1ofv1

Description: The value of a one-to-one function onto a triple at 1. (Contributed by AV, 20-Jul-2025)

Ref Expression
Hypothesis tpf1o.f F = x 0 ..^ 3 if x = 0 A if x = 1 B C
Assertion tpf1ofv1 B V F 1 = B

Proof

Step Hyp Ref Expression
1 tpf1o.f F = x 0 ..^ 3 if x = 0 A if x = 1 B C
2 1 a1i B V F = x 0 ..^ 3 if x = 0 A if x = 1 B C
3 ax-1ne0 1 0
4 3 neii ¬ 1 = 0
5 eqeq1 x = 1 x = 0 1 = 0
6 4 5 mtbiri x = 1 ¬ x = 0
7 6 iffalsed x = 1 if x = 0 A if x = 1 B C = if x = 1 B C
8 iftrue x = 1 if x = 1 B C = B
9 7 8 eqtrd x = 1 if x = 0 A if x = 1 B C = B
10 9 adantl B V x = 1 if x = 0 A if x = 1 B C = B
11 1nn0 1 0
12 3nn 3
13 1lt3 1 < 3
14 elfzo0 1 0 ..^ 3 1 0 3 1 < 3
15 11 12 13 14 mpbir3an 1 0 ..^ 3
16 15 a1i B V 1 0 ..^ 3
17 id B V B V
18 2 10 16 17 fvmptd B V F 1 = B