Metamath Proof Explorer


Theorem tpf1ofv2

Description: The value of a one-to-one function onto a triple at 2. (Contributed by AV, 20-Jul-2025)

Ref Expression
Hypothesis tpf1o.f F = x 0 ..^ 3 if x = 0 A if x = 1 B C
Assertion tpf1ofv2 C V F 2 = C

Proof

Step Hyp Ref Expression
1 tpf1o.f F = x 0 ..^ 3 if x = 0 A if x = 1 B C
2 1 a1i C V F = x 0 ..^ 3 if x = 0 A if x = 1 B C
3 2ne0 2 0
4 3 neii ¬ 2 = 0
5 eqeq1 x = 2 x = 0 2 = 0
6 4 5 mtbiri x = 2 ¬ x = 0
7 6 iffalsed x = 2 if x = 0 A if x = 1 B C = if x = 1 B C
8 1re 1
9 1lt2 1 < 2
10 8 9 gtneii 2 1
11 10 neii ¬ 2 = 1
12 eqeq1 x = 2 x = 1 2 = 1
13 11 12 mtbiri x = 2 ¬ x = 1
14 13 iffalsed x = 2 if x = 1 B C = C
15 7 14 eqtrd x = 2 if x = 0 A if x = 1 B C = C
16 15 adantl C V x = 2 if x = 0 A if x = 1 B C = C
17 2nn0 2 0
18 3nn 3
19 2lt3 2 < 3
20 elfzo0 2 0 ..^ 3 2 0 3 2 < 3
21 17 18 19 20 mpbir3an 2 0 ..^ 3
22 21 a1i C V 2 0 ..^ 3
23 id C V C V
24 2 16 22 23 fvmptd C V F 2 = C