Metamath Proof Explorer


Theorem tpnei

Description: The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss . (Contributed by FL, 2-Oct-2006)

Ref Expression
Hypothesis tpnei.1 X = J
Assertion tpnei J Top S X X nei J S

Proof

Step Hyp Ref Expression
1 tpnei.1 X = J
2 1 topopn J Top X J
3 opnneiss J Top X J S X X nei J S
4 3 3exp J Top X J S X X nei J S
5 2 4 mpd J Top S X X nei J S
6 ssnei J Top X nei J S S X
7 6 ex J Top X nei J S S X
8 5 7 impbid J Top S X X nei J S