Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Function transposition
tposco
Next ⟩
tpossym
Metamath Proof Explorer
Ascii
Unicode
Theorem
tposco
Description:
Transposition of a composition.
(Contributed by
Mario Carneiro
, 4-Oct-2015)
Ref
Expression
Assertion
tposco
⊢
tpos
F
∘
G
=
F
∘
tpos
G
Proof
Step
Hyp
Ref
Expression
1
coass
⊢
F
∘
G
∘
x
∈
V
×
V
∪
∅
⟼
⋃
x
-1
=
F
∘
G
∘
x
∈
V
×
V
∪
∅
⟼
⋃
x
-1
2
dftpos4
⊢
tpos
F
∘
G
=
F
∘
G
∘
x
∈
V
×
V
∪
∅
⟼
⋃
x
-1
3
dftpos4
⊢
tpos
G
=
G
∘
x
∈
V
×
V
∪
∅
⟼
⋃
x
-1
4
3
coeq2i
⊢
F
∘
tpos
G
=
F
∘
G
∘
x
∈
V
×
V
∪
∅
⟼
⋃
x
-1
5
1
2
4
3eqtr4i
⊢
tpos
F
∘
G
=
F
∘
tpos
G