Metamath Proof Explorer


Theorem tposco

Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion tposco tpos F G = F tpos G

Proof

Step Hyp Ref Expression
1 coass F G x V × V x -1 = F G x V × V x -1
2 dftpos4 tpos F G = F G x V × V x -1
3 dftpos4 tpos G = G x V × V x -1
4 3 coeq2i F tpos G = F G x V × V x -1
5 1 2 4 3eqtr4i tpos F G = F tpos G