Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Function transposition
tposeq
Next ⟩
tposeqd
Metamath Proof Explorer
Ascii
Unicode
Theorem
tposeq
Description:
Equality theorem for transposition.
(Contributed by
Mario Carneiro
, 10-Sep-2015)
Ref
Expression
Assertion
tposeq
⊢
F
=
G
→
tpos
F
=
tpos
G
Proof
Step
Hyp
Ref
Expression
1
eqimss
⊢
F
=
G
→
F
⊆
G
2
tposss
⊢
F
⊆
G
→
tpos
F
⊆
tpos
G
3
1
2
syl
⊢
F
=
G
→
tpos
F
⊆
tpos
G
4
eqimss2
⊢
F
=
G
→
G
⊆
F
5
tposss
⊢
G
⊆
F
→
tpos
G
⊆
tpos
F
6
4
5
syl
⊢
F
=
G
→
tpos
G
⊆
tpos
F
7
3
6
eqssd
⊢
F
=
G
→
tpos
F
=
tpos
G