Metamath Proof Explorer


Theorem tposf12

Description: Condition for an injective transposition. (Contributed by NM, 10-Sep-2015)

Ref Expression
Assertion tposf12 Rel A F : A 1-1 B tpos F : A -1 1-1 B

Proof

Step Hyp Ref Expression
1 simpr Rel A F : A 1-1 B F : A 1-1 B
2 relcnv Rel A -1
3 cnvf1o Rel A -1 x A -1 x -1 : A -1 1-1 onto A -1 -1
4 f1of1 x A -1 x -1 : A -1 1-1 onto A -1 -1 x A -1 x -1 : A -1 1-1 A -1 -1
5 2 3 4 mp2b x A -1 x -1 : A -1 1-1 A -1 -1
6 simpl Rel A F : A 1-1 B Rel A
7 dfrel2 Rel A A -1 -1 = A
8 6 7 sylib Rel A F : A 1-1 B A -1 -1 = A
9 f1eq3 A -1 -1 = A x A -1 x -1 : A -1 1-1 A -1 -1 x A -1 x -1 : A -1 1-1 A
10 8 9 syl Rel A F : A 1-1 B x A -1 x -1 : A -1 1-1 A -1 -1 x A -1 x -1 : A -1 1-1 A
11 5 10 mpbii Rel A F : A 1-1 B x A -1 x -1 : A -1 1-1 A
12 f1dm F : A 1-1 B dom F = A
13 1 12 syl Rel A F : A 1-1 B dom F = A
14 13 cnveqd Rel A F : A 1-1 B dom F -1 = A -1
15 mpteq1 dom F -1 = A -1 x dom F -1 x -1 = x A -1 x -1
16 f1eq1 x dom F -1 x -1 = x A -1 x -1 x dom F -1 x -1 : A -1 1-1 A x A -1 x -1 : A -1 1-1 A
17 14 15 16 3syl Rel A F : A 1-1 B x dom F -1 x -1 : A -1 1-1 A x A -1 x -1 : A -1 1-1 A
18 11 17 mpbird Rel A F : A 1-1 B x dom F -1 x -1 : A -1 1-1 A
19 f1co F : A 1-1 B x dom F -1 x -1 : A -1 1-1 A F x dom F -1 x -1 : A -1 1-1 B
20 1 18 19 syl2anc Rel A F : A 1-1 B F x dom F -1 x -1 : A -1 1-1 B
21 12 releqd F : A 1-1 B Rel dom F Rel A
22 21 biimparc Rel A F : A 1-1 B Rel dom F
23 dftpos2 Rel dom F tpos F = F x dom F -1 x -1
24 f1eq1 tpos F = F x dom F -1 x -1 tpos F : A -1 1-1 B F x dom F -1 x -1 : A -1 1-1 B
25 22 23 24 3syl Rel A F : A 1-1 B tpos F : A -1 1-1 B F x dom F -1 x -1 : A -1 1-1 B
26 20 25 mpbird Rel A F : A 1-1 B tpos F : A -1 1-1 B
27 26 ex Rel A F : A 1-1 B tpos F : A -1 1-1 B