Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Function transposition
tposfn
Next ⟩
tpos0
Metamath Proof Explorer
Ascii
Unicode
Theorem
tposfn
Description:
Functionality of a transposition.
(Contributed by
Mario Carneiro
, 4-Oct-2015)
Ref
Expression
Assertion
tposfn
⊢
F
Fn
A
×
B
→
tpos
F
Fn
B
×
A
Proof
Step
Hyp
Ref
Expression
1
tposf
⊢
F
:
A
×
B
⟶
V
→
tpos
F
:
B
×
A
⟶
V
2
dffn2
⊢
F
Fn
A
×
B
↔
F
:
A
×
B
⟶
V
3
dffn2
⊢
tpos
F
Fn
B
×
A
↔
tpos
F
:
B
×
A
⟶
V
4
1
2
3
3imtr4i
⊢
F
Fn
A
×
B
→
tpos
F
Fn
B
×
A