Metamath Proof Explorer


Theorem tposfn

Description: Functionality of a transposition. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion tposfn F Fn A × B tpos F Fn B × A

Proof

Step Hyp Ref Expression
1 tposf F : A × B V tpos F : B × A V
2 dffn2 F Fn A × B F : A × B V
3 dffn2 tpos F Fn B × A tpos F : B × A V
4 1 2 3 3imtr4i F Fn A × B tpos F Fn B × A