Metamath Proof Explorer


Theorem tposfo

Description: The domain and range of a transposition. (Contributed by NM, 10-Sep-2015)

Ref Expression
Assertion tposfo F : A × B onto C tpos F : B × A onto C

Proof

Step Hyp Ref Expression
1 relxp Rel A × B
2 tposfo2 Rel A × B F : A × B onto C tpos F : A × B -1 onto C
3 1 2 ax-mp F : A × B onto C tpos F : A × B -1 onto C
4 cnvxp A × B -1 = B × A
5 foeq2 A × B -1 = B × A tpos F : A × B -1 onto C tpos F : B × A onto C
6 4 5 ax-mp tpos F : A × B -1 onto C tpos F : B × A onto C
7 3 6 sylib F : A × B onto C tpos F : B × A onto C