Metamath Proof Explorer


Theorem tposmap

Description: The transposition of an I X J -matrix is a J X I -matrix, see also the statement in Lang p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018)

Ref Expression
Assertion tposmap A B I × J tpos A B J × I

Proof

Step Hyp Ref Expression
1 elmapi A B I × J A : I × J B
2 tposf A : I × J B tpos A : J × I B
3 1 2 syl A B I × J tpos A : J × I B
4 elmapex A B I × J B V I × J V
5 cnvxp I × J -1 = J × I
6 cnvexg I × J V I × J -1 V
7 5 6 eqeltrrid I × J V J × I V
8 7 anim2i B V I × J V B V J × I V
9 elmapg B V J × I V tpos A B J × I tpos A : J × I B
10 4 8 9 3syl A B I × J tpos A B J × I tpos A : J × I B
11 3 10 mpbird A B I × J tpos A B J × I