Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Function transposition
tposmpo
Next ⟩
tposconst
Metamath Proof Explorer
Ascii
Unicode
Theorem
tposmpo
Description:
Transposition of a two-argument mapping.
(Contributed by
Mario Carneiro
, 10-Sep-2015)
Ref
Expression
Hypothesis
tposmpo.1
⊢
F
=
x
∈
A
,
y
∈
B
⟼
C
Assertion
tposmpo
⊢
tpos
F
=
y
∈
B
,
x
∈
A
⟼
C
Proof
Step
Hyp
Ref
Expression
1
tposmpo.1
⊢
F
=
x
∈
A
,
y
∈
B
⟼
C
2
df-mpo
⊢
x
∈
A
,
y
∈
B
⟼
C
=
x
y
z
|
x
∈
A
∧
y
∈
B
∧
z
=
C
3
ancom
⊢
x
∈
A
∧
y
∈
B
↔
y
∈
B
∧
x
∈
A
4
3
anbi1i
⊢
x
∈
A
∧
y
∈
B
∧
z
=
C
↔
y
∈
B
∧
x
∈
A
∧
z
=
C
5
4
oprabbii
⊢
x
y
z
|
x
∈
A
∧
y
∈
B
∧
z
=
C
=
x
y
z
|
y
∈
B
∧
x
∈
A
∧
z
=
C
6
1
2
5
3eqtri
⊢
F
=
x
y
z
|
y
∈
B
∧
x
∈
A
∧
z
=
C
7
6
tposoprab
⊢
tpos
F
=
y
x
z
|
y
∈
B
∧
x
∈
A
∧
z
=
C
8
df-mpo
⊢
y
∈
B
,
x
∈
A
⟼
C
=
y
x
z
|
y
∈
B
∧
x
∈
A
∧
z
=
C
9
7
8
eqtr4i
⊢
tpos
F
=
y
∈
B
,
x
∈
A
⟼
C