Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Function transposition
tposss
Next ⟩
tposeq
Metamath Proof Explorer
Ascii
Unicode
Theorem
tposss
Description:
Subset theorem for transposition.
(Contributed by
Mario Carneiro
, 10-Sep-2015)
Ref
Expression
Assertion
tposss
⊢
F
⊆
G
→
tpos
F
⊆
tpos
G
Proof
Step
Hyp
Ref
Expression
1
coss1
⊢
F
⊆
G
→
F
∘
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
⊆
G
∘
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
2
dmss
⊢
F
⊆
G
→
dom
⁡
F
⊆
dom
⁡
G
3
cnvss
⊢
dom
⁡
F
⊆
dom
⁡
G
→
dom
⁡
F
-1
⊆
dom
⁡
G
-1
4
unss1
⊢
dom
⁡
F
-1
⊆
dom
⁡
G
-1
→
dom
⁡
F
-1
∪
∅
⊆
dom
⁡
G
-1
∪
∅
5
resmpt
⊢
dom
⁡
F
-1
∪
∅
⊆
dom
⁡
G
-1
∪
∅
→
x
∈
dom
⁡
G
-1
∪
∅
⟼
⋃
x
-1
↾
dom
⁡
F
-1
∪
∅
=
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
6
2
3
4
5
4syl
⊢
F
⊆
G
→
x
∈
dom
⁡
G
-1
∪
∅
⟼
⋃
x
-1
↾
dom
⁡
F
-1
∪
∅
=
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
7
resss
⊢
x
∈
dom
⁡
G
-1
∪
∅
⟼
⋃
x
-1
↾
dom
⁡
F
-1
∪
∅
⊆
x
∈
dom
⁡
G
-1
∪
∅
⟼
⋃
x
-1
8
6
7
eqsstrrdi
⊢
F
⊆
G
→
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
⊆
x
∈
dom
⁡
G
-1
∪
∅
⟼
⋃
x
-1
9
coss2
⊢
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
⊆
x
∈
dom
⁡
G
-1
∪
∅
⟼
⋃
x
-1
→
G
∘
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
⊆
G
∘
x
∈
dom
⁡
G
-1
∪
∅
⟼
⋃
x
-1
10
8
9
syl
⊢
F
⊆
G
→
G
∘
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
⊆
G
∘
x
∈
dom
⁡
G
-1
∪
∅
⟼
⋃
x
-1
11
1
10
sstrd
⊢
F
⊆
G
→
F
∘
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
⊆
G
∘
x
∈
dom
⁡
G
-1
∪
∅
⟼
⋃
x
-1
12
df-tpos
⊢
tpos
F
=
F
∘
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
13
df-tpos
⊢
tpos
G
=
G
∘
x
∈
dom
⁡
G
-1
∪
∅
⟼
⋃
x
-1
14
11
12
13
3sstr4g
⊢
F
⊆
G
→
tpos
F
⊆
tpos
G