Metamath Proof Explorer


Theorem tposss

Description: Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion tposss F G tpos F tpos G

Proof

Step Hyp Ref Expression
1 coss1 F G F x dom F -1 x -1 G x dom F -1 x -1
2 dmss F G dom F dom G
3 cnvss dom F dom G dom F -1 dom G -1
4 unss1 dom F -1 dom G -1 dom F -1 dom G -1
5 resmpt dom F -1 dom G -1 x dom G -1 x -1 dom F -1 = x dom F -1 x -1
6 2 3 4 5 4syl F G x dom G -1 x -1 dom F -1 = x dom F -1 x -1
7 resss x dom G -1 x -1 dom F -1 x dom G -1 x -1
8 6 7 eqsstrrdi F G x dom F -1 x -1 x dom G -1 x -1
9 coss2 x dom F -1 x -1 x dom G -1 x -1 G x dom F -1 x -1 G x dom G -1 x -1
10 8 9 syl F G G x dom F -1 x -1 G x dom G -1 x -1
11 1 10 sstrd F G F x dom F -1 x -1 G x dom G -1 x -1
12 df-tpos tpos F = F x dom F -1 x -1
13 df-tpos tpos G = G x dom G -1 x -1
14 11 12 13 3sstr4g F G tpos F tpos G