Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Function transposition
tpossym
Next ⟩
tposeqi
Metamath Proof Explorer
Ascii
Unicode
Theorem
tpossym
Description:
Two ways to say a function is symmetric.
(Contributed by
Mario Carneiro
, 4-Oct-2015)
Ref
Expression
Assertion
tpossym
⊢
F
Fn
A
×
A
→
tpos
F
=
F
↔
∀
x
∈
A
∀
y
∈
A
x
F
y
=
y
F
x
Proof
Step
Hyp
Ref
Expression
1
tposfn
⊢
F
Fn
A
×
A
→
tpos
F
Fn
A
×
A
2
eqfnov2
⊢
tpos
F
Fn
A
×
A
∧
F
Fn
A
×
A
→
tpos
F
=
F
↔
∀
x
∈
A
∀
y
∈
A
x
tpos
F
y
=
x
F
y
3
1
2
mpancom
⊢
F
Fn
A
×
A
→
tpos
F
=
F
↔
∀
x
∈
A
∀
y
∈
A
x
tpos
F
y
=
x
F
y
4
eqcom
⊢
x
tpos
F
y
=
x
F
y
↔
x
F
y
=
x
tpos
F
y
5
ovtpos
⊢
x
tpos
F
y
=
y
F
x
6
5
eqeq2i
⊢
x
F
y
=
x
tpos
F
y
↔
x
F
y
=
y
F
x
7
4
6
bitri
⊢
x
tpos
F
y
=
x
F
y
↔
x
F
y
=
y
F
x
8
7
2ralbii
⊢
∀
x
∈
A
∀
y
∈
A
x
tpos
F
y
=
x
F
y
↔
∀
x
∈
A
∀
y
∈
A
x
F
y
=
y
F
x
9
3
8
bitrdi
⊢
F
Fn
A
×
A
→
tpos
F
=
F
↔
∀
x
∈
A
∀
y
∈
A
x
F
y
=
y
F
x