Metamath Proof Explorer


Theorem tpprceq3

Description: An unordered triple is an unordered pair if one of its elements is a proper class or is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017)

Ref Expression
Assertion tpprceq3 ¬ C V C B A B C = A B

Proof

Step Hyp Ref Expression
1 ianor ¬ C V C B ¬ C V ¬ C B
2 prprc2 ¬ C V B C = B
3 2 uneq1d ¬ C V B C A = B A
4 tprot A B C = B C A
5 df-tp B C A = B C A
6 4 5 eqtri A B C = B C A
7 prcom A B = B A
8 df-pr B A = B A
9 7 8 eqtri A B = B A
10 3 6 9 3eqtr4g ¬ C V A B C = A B
11 nne ¬ C B C = B
12 tppreq3 B = C A B C = A B
13 12 eqcoms C = B A B C = A B
14 11 13 sylbi ¬ C B A B C = A B
15 10 14 jaoi ¬ C V ¬ C B A B C = A B
16 1 15 sylbi ¬ C V C B A B C = A B