Metamath Proof Explorer


Theorem tpss

Description: An unordered triple of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Hypotheses tpss.1 A V
tpss.2 B V
tpss.3 C V
Assertion tpss A D B D C D A B C D

Proof

Step Hyp Ref Expression
1 tpss.1 A V
2 tpss.2 B V
3 tpss.3 C V
4 unss A B D C D A B C D
5 df-3an A D B D C D A D B D C D
6 1 2 prss A D B D A B D
7 3 snss C D C D
8 6 7 anbi12i A D B D C D A B D C D
9 5 8 bitri A D B D C D A B D C D
10 df-tp A B C = A B C
11 10 sseq1i A B C D A B C D
12 4 9 11 3bitr4i A D B D C D A B C D