Database
BASIC TOPOLOGY
Topology
Topological spaces
Topological spaces
tpsuni
Next ⟩
tpstop
Metamath Proof Explorer
Ascii
Unicode
Theorem
tpsuni
Description:
The base set of a topological space.
(Contributed by
FL
, 27-Jun-2014)
Ref
Expression
Hypotheses
istps.a
⊢
A
=
Base
K
istps.j
⊢
J
=
TopOpen
⁡
K
Assertion
tpsuni
⊢
K
∈
TopSp
→
A
=
⋃
J
Proof
Step
Hyp
Ref
Expression
1
istps.a
⊢
A
=
Base
K
2
istps.j
⊢
J
=
TopOpen
⁡
K
3
1
2
istps2
⊢
K
∈
TopSp
↔
J
∈
Top
∧
A
=
⋃
J
4
3
simprbi
⊢
K
∈
TopSp
→
A
=
⋃
J