Step |
Hyp |
Ref |
Expression |
1 |
|
trcl.1 |
|
2 |
|
trcl.2 |
|
3 |
|
trcl.3 |
|
4 |
|
peano1 |
|
5 |
2
|
fveq1i |
|
6 |
|
fr0g |
|
7 |
1 6
|
ax-mp |
|
8 |
5 7
|
eqtr2i |
|
9 |
8
|
eqimssi |
|
10 |
|
fveq2 |
|
11 |
10
|
sseq2d |
|
12 |
11
|
rspcev |
|
13 |
4 9 12
|
mp2an |
|
14 |
|
ssiun |
|
15 |
13 14
|
ax-mp |
|
16 |
15 3
|
sseqtrri |
|
17 |
|
dftr2 |
|
18 |
|
eliun |
|
19 |
18
|
anbi2i |
|
20 |
|
r19.42v |
|
21 |
19 20
|
bitr4i |
|
22 |
|
elunii |
|
23 |
|
ssun2 |
|
24 |
|
fvex |
|
25 |
24
|
uniex |
|
26 |
24 25
|
unex |
|
27 |
|
id |
|
28 |
|
unieq |
|
29 |
27 28
|
uneq12d |
|
30 |
|
id |
|
31 |
|
unieq |
|
32 |
30 31
|
uneq12d |
|
33 |
2 29 32
|
frsucmpt2w |
|
34 |
26 33
|
mpan2 |
|
35 |
23 34
|
sseqtrrid |
|
36 |
35
|
sseld |
|
37 |
22 36
|
syl5 |
|
38 |
37
|
reximia |
|
39 |
21 38
|
sylbi |
|
40 |
|
peano2 |
|
41 |
|
fveq2 |
|
42 |
41
|
eleq2d |
|
43 |
42
|
rspcev |
|
44 |
43
|
ex |
|
45 |
40 44
|
syl |
|
46 |
45
|
rexlimiv |
|
47 |
|
fveq2 |
|
48 |
47
|
eleq2d |
|
49 |
48
|
cbvrexvw |
|
50 |
46 49
|
sylibr |
|
51 |
|
eliun |
|
52 |
50 51
|
sylibr |
|
53 |
39 52
|
syl |
|
54 |
53
|
ax-gen |
|
55 |
17 54
|
mpgbir |
|
56 |
|
treq |
|
57 |
3 56
|
ax-mp |
|
58 |
55 57
|
mpbir |
|
59 |
|
fveq2 |
|
60 |
59
|
sseq1d |
|
61 |
|
fveq2 |
|
62 |
61
|
sseq1d |
|
63 |
|
fveq2 |
|
64 |
63
|
sseq1d |
|
65 |
5 7
|
eqtri |
|
66 |
65
|
sseq1i |
|
67 |
66
|
biimpri |
|
68 |
67
|
adantr |
|
69 |
|
uniss |
|
70 |
|
df-tr |
|
71 |
|
sstr2 |
|
72 |
70 71
|
syl5bi |
|
73 |
69 72
|
syl |
|
74 |
73
|
anc2li |
|
75 |
|
unss |
|
76 |
74 75
|
syl6ib |
|
77 |
34
|
sseq1d |
|
78 |
77
|
biimprd |
|
79 |
76 78
|
syl9r |
|
80 |
79
|
com23 |
|
81 |
80
|
adantld |
|
82 |
60 62 64 68 81
|
finds2 |
|
83 |
82
|
com12 |
|
84 |
83
|
ralrimiv |
|
85 |
|
fveq2 |
|
86 |
85
|
cbviunv |
|
87 |
3 86
|
eqtri |
|
88 |
87
|
sseq1i |
|
89 |
|
iunss |
|
90 |
88 89
|
bitri |
|
91 |
84 90
|
sylibr |
|
92 |
91
|
ax-gen |
|
93 |
16 58 92
|
3pm3.2i |
|