Metamath Proof Explorer


Theorem trel

Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion trel Tr A B C C A B A

Proof

Step Hyp Ref Expression
1 dftr2 Tr A y x y x x A y A
2 eleq12 y = B x = C y x B C
3 eleq1 x = C x A C A
4 3 adantl y = B x = C x A C A
5 2 4 anbi12d y = B x = C y x x A B C C A
6 eleq1 y = B y A B A
7 6 adantr y = B x = C y A B A
8 5 7 imbi12d y = B x = C y x x A y A B C C A B A
9 8 spc2gv B C C A y x y x x A y A B C C A B A
10 9 pm2.43b y x y x x A y A B C C A B A
11 1 10 sylbi Tr A B C C A B A