Metamath Proof Explorer


Theorem trel3

Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994)

Ref Expression
Assertion trel3 Tr A B C C D D A B A

Proof

Step Hyp Ref Expression
1 3anass B C C D D A B C C D D A
2 trel Tr A C D D A C A
3 2 anim2d Tr A B C C D D A B C C A
4 1 3 syl5bi Tr A B C C D D A B C C A
5 trel Tr A B C C A B A
6 4 5 syld Tr A B C C D D A B A