Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Transitive classes
treq
Next ⟩
trel
Metamath Proof Explorer
Ascii
Unicode
Theorem
treq
Description:
Equality theorem for the transitive class predicate.
(Contributed by
NM
, 17-Sep-1993)
Ref
Expression
Assertion
treq
⊢
A
=
B
→
Tr
⁡
A
↔
Tr
⁡
B
Proof
Step
Hyp
Ref
Expression
1
unieq
⊢
A
=
B
→
⋃
A
=
⋃
B
2
1
sseq1d
⊢
A
=
B
→
⋃
A
⊆
A
↔
⋃
B
⊆
A
3
sseq2
⊢
A
=
B
→
⋃
B
⊆
A
↔
⋃
B
⊆
B
4
2
3
bitrd
⊢
A
=
B
→
⋃
A
⊆
A
↔
⋃
B
⊆
B
5
df-tr
⊢
Tr
⁡
A
↔
⋃
A
⊆
A
6
df-tr
⊢
Tr
⁡
B
↔
⋃
B
⊆
B
7
4
5
6
3bitr4g
⊢
A
=
B
→
Tr
⁡
A
↔
Tr
⁡
B