Metamath Proof Explorer


Theorem treq

Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993)

Ref Expression
Assertion treq A = B Tr A Tr B

Proof

Step Hyp Ref Expression
1 unieq A = B A = B
2 1 sseq1d A = B A A B A
3 sseq2 A = B B A B B
4 2 3 bitrd A = B A A B B
5 df-tr Tr A A A
6 df-tr Tr B B B
7 4 5 6 3bitr4g A = B Tr A Tr B