Metamath Proof Explorer


Theorem trfg

Description: The trace operation and the filGen operation are inverses to one another in some sense, with filGen growing the base set and ` |``t ` shrinking it. See fgtr for the converse cancellation law. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion trfg F Fil A A X X V X filGen F 𝑡 A = F

Proof

Step Hyp Ref Expression
1 filfbas F Fil A F fBas A
2 1 3ad2ant1 F Fil A A X X V F fBas A
3 filsspw F Fil A F 𝒫 A
4 3 3ad2ant1 F Fil A A X X V F 𝒫 A
5 simp2 F Fil A A X X V A X
6 5 sspwd F Fil A A X X V 𝒫 A 𝒫 X
7 4 6 sstrd F Fil A A X X V F 𝒫 X
8 simp3 F Fil A A X X V X V
9 fbasweak F fBas A F 𝒫 X X V F fBas X
10 2 7 8 9 syl3anc F Fil A A X X V F fBas X
11 fgcl F fBas X X filGen F Fil X
12 10 11 syl F Fil A A X X V X filGen F Fil X
13 filtop F Fil A A F
14 13 3ad2ant1 F Fil A A X X V A F
15 restval X filGen F Fil X A F X filGen F 𝑡 A = ran x X filGen F x A
16 12 14 15 syl2anc F Fil A A X X V X filGen F 𝑡 A = ran x X filGen F x A
17 elfg F fBas X x X filGen F x X y F y x
18 10 17 syl F Fil A A X X V x X filGen F x X y F y x
19 18 simplbda F Fil A A X X V x X filGen F y F y x
20 simpll1 F Fil A A X X V x X filGen F y F y x F Fil A
21 simprl F Fil A A X X V x X filGen F y F y x y F
22 inss2 x A A
23 22 a1i F Fil A A X X V x X filGen F y F y x x A A
24 simprr F Fil A A X X V x X filGen F y F y x y x
25 filelss F Fil A y F y A
26 25 3ad2antl1 F Fil A A X X V y F y A
27 26 ad2ant2r F Fil A A X X V x X filGen F y F y x y A
28 24 27 ssind F Fil A A X X V x X filGen F y F y x y x A
29 filss F Fil A y F x A A y x A x A F
30 20 21 23 28 29 syl13anc F Fil A A X X V x X filGen F y F y x x A F
31 19 30 rexlimddv F Fil A A X X V x X filGen F x A F
32 31 fmpttd F Fil A A X X V x X filGen F x A : X filGen F F
33 32 frnd F Fil A A X X V ran x X filGen F x A F
34 16 33 eqsstrd F Fil A A X X V X filGen F 𝑡 A F
35 filelss F Fil A x F x A
36 35 3ad2antl1 F Fil A A X X V x F x A
37 df-ss x A x A = x
38 36 37 sylib F Fil A A X X V x F x A = x
39 12 adantr F Fil A A X X V x F X filGen F Fil X
40 14 adantr F Fil A A X X V x F A F
41 ssfg F fBas X F X filGen F
42 10 41 syl F Fil A A X X V F X filGen F
43 42 sselda F Fil A A X X V x F x X filGen F
44 elrestr X filGen F Fil X A F x X filGen F x A X filGen F 𝑡 A
45 39 40 43 44 syl3anc F Fil A A X X V x F x A X filGen F 𝑡 A
46 38 45 eqeltrrd F Fil A A X X V x F x X filGen F 𝑡 A
47 34 46 eqelssd F Fil A A X X V X filGen F 𝑡 A = F