Metamath Proof Explorer


Theorem trfilss

Description: If A is a member of the filter, then the filter truncated to A is a subset of the original filter. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion trfilss F Fil X A F F 𝑡 A F

Proof

Step Hyp Ref Expression
1 restval F Fil X A F F 𝑡 A = ran x F x A
2 filin F Fil X x F A F x A F
3 2 3expa F Fil X x F A F x A F
4 3 an32s F Fil X A F x F x A F
5 4 fmpttd F Fil X A F x F x A : F F
6 5 frnd F Fil X A F ran x F x A F
7 1 6 eqsstrd F Fil X A F F 𝑡 A F