Metamath Proof Explorer


Theorem trgcgr

Description: Triangle congruence. (Contributed by Thierry Arnoux, 27-Apr-2019)

Ref Expression
Hypotheses trgcgrg.p P = Base G
trgcgrg.m - ˙ = dist G
trgcgrg.r ˙ = 𝒢 G
trgcgrg.g φ G 𝒢 Tarski
trgcgrg.a φ A P
trgcgrg.b φ B P
trgcgrg.c φ C P
trgcgrg.d φ D P
trgcgrg.e φ E P
trgcgrg.f φ F P
trgcgr.1 φ A - ˙ B = D - ˙ E
trgcgr.2 φ B - ˙ C = E - ˙ F
trgcgr.3 φ C - ˙ A = F - ˙ D
Assertion trgcgr φ ⟨“ ABC ”⟩ ˙ ⟨“ DEF ”⟩

Proof

Step Hyp Ref Expression
1 trgcgrg.p P = Base G
2 trgcgrg.m - ˙ = dist G
3 trgcgrg.r ˙ = 𝒢 G
4 trgcgrg.g φ G 𝒢 Tarski
5 trgcgrg.a φ A P
6 trgcgrg.b φ B P
7 trgcgrg.c φ C P
8 trgcgrg.d φ D P
9 trgcgrg.e φ E P
10 trgcgrg.f φ F P
11 trgcgr.1 φ A - ˙ B = D - ˙ E
12 trgcgr.2 φ B - ˙ C = E - ˙ F
13 trgcgr.3 φ C - ˙ A = F - ˙ D
14 1 2 3 4 5 6 7 8 9 10 trgcgrg φ ⟨“ ABC ”⟩ ˙ ⟨“ DEF ”⟩ A - ˙ B = D - ˙ E B - ˙ C = E - ˙ F C - ˙ A = F - ˙ D
15 11 12 13 14 mpbir3and φ ⟨“ ABC ”⟩ ˙ ⟨“ DEF ”⟩