Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Congruence of a series of points
trgcgr
Next ⟩
ercgrg
Metamath Proof Explorer
Ascii
Unicode
Theorem
trgcgr
Description:
Triangle congruence.
(Contributed by
Thierry Arnoux
, 27-Apr-2019)
Ref
Expression
Hypotheses
trgcgrg.p
⊢
P
=
Base
G
trgcgrg.m
⊢
-
˙
=
dist
⁡
G
trgcgrg.r
⊢
∼
˙
=
∼
𝒢
⁡
G
trgcgrg.g
⊢
φ
→
G
∈
𝒢
Tarski
trgcgrg.a
⊢
φ
→
A
∈
P
trgcgrg.b
⊢
φ
→
B
∈
P
trgcgrg.c
⊢
φ
→
C
∈
P
trgcgrg.d
⊢
φ
→
D
∈
P
trgcgrg.e
⊢
φ
→
E
∈
P
trgcgrg.f
⊢
φ
→
F
∈
P
trgcgr.1
⊢
φ
→
A
-
˙
B
=
D
-
˙
E
trgcgr.2
⊢
φ
→
B
-
˙
C
=
E
-
˙
F
trgcgr.3
⊢
φ
→
C
-
˙
A
=
F
-
˙
D
Assertion
trgcgr
⊢
φ
→
〈“
A
B
C
”〉
∼
˙
〈“
D
E
F
”〉
Proof
Step
Hyp
Ref
Expression
1
trgcgrg.p
⊢
P
=
Base
G
2
trgcgrg.m
⊢
-
˙
=
dist
⁡
G
3
trgcgrg.r
⊢
∼
˙
=
∼
𝒢
⁡
G
4
trgcgrg.g
⊢
φ
→
G
∈
𝒢
Tarski
5
trgcgrg.a
⊢
φ
→
A
∈
P
6
trgcgrg.b
⊢
φ
→
B
∈
P
7
trgcgrg.c
⊢
φ
→
C
∈
P
8
trgcgrg.d
⊢
φ
→
D
∈
P
9
trgcgrg.e
⊢
φ
→
E
∈
P
10
trgcgrg.f
⊢
φ
→
F
∈
P
11
trgcgr.1
⊢
φ
→
A
-
˙
B
=
D
-
˙
E
12
trgcgr.2
⊢
φ
→
B
-
˙
C
=
E
-
˙
F
13
trgcgr.3
⊢
φ
→
C
-
˙
A
=
F
-
˙
D
14
1
2
3
4
5
6
7
8
9
10
trgcgrg
⊢
φ
→
〈“
A
B
C
”〉
∼
˙
〈“
D
E
F
”〉
↔
A
-
˙
B
=
D
-
˙
E
∧
B
-
˙
C
=
E
-
˙
F
∧
C
-
˙
A
=
F
-
˙
D
15
11
12
13
14
mpbir3and
⊢
φ
→
〈“
A
B
C
”〉
∼
˙
〈“
D
E
F
”〉