Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Transitive classes
trin
Next ⟩
tr0
Metamath Proof Explorer
Ascii
Unicode
Theorem
trin
Description:
The intersection of transitive classes is transitive.
(Contributed by
NM
, 9-May-1994)
Ref
Expression
Assertion
trin
⊢
Tr
⁡
A
∧
Tr
⁡
B
→
Tr
⁡
A
∩
B
Proof
Step
Hyp
Ref
Expression
1
elin
⊢
x
∈
A
∩
B
↔
x
∈
A
∧
x
∈
B
2
trss
⊢
Tr
⁡
A
→
x
∈
A
→
x
⊆
A
3
trss
⊢
Tr
⁡
B
→
x
∈
B
→
x
⊆
B
4
2
3
im2anan9
⊢
Tr
⁡
A
∧
Tr
⁡
B
→
x
∈
A
∧
x
∈
B
→
x
⊆
A
∧
x
⊆
B
5
1
4
syl5bi
⊢
Tr
⁡
A
∧
Tr
⁡
B
→
x
∈
A
∩
B
→
x
⊆
A
∧
x
⊆
B
6
ssin
⊢
x
⊆
A
∧
x
⊆
B
↔
x
⊆
A
∩
B
7
5
6
syl6ib
⊢
Tr
⁡
A
∧
Tr
⁡
B
→
x
∈
A
∩
B
→
x
⊆
A
∩
B
8
7
ralrimiv
⊢
Tr
⁡
A
∧
Tr
⁡
B
→
∀
x
∈
A
∩
B
x
⊆
A
∩
B
9
dftr3
⊢
Tr
⁡
A
∩
B
↔
∀
x
∈
A
∩
B
x
⊆
A
∩
B
10
8
9
sylibr
⊢
Tr
⁡
A
∧
Tr
⁡
B
→
Tr
⁡
A
∩
B