Metamath Proof Explorer


Theorem trin

Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994)

Ref Expression
Assertion trin Tr A Tr B Tr A B

Proof

Step Hyp Ref Expression
1 elin x A B x A x B
2 trss Tr A x A x A
3 trss Tr B x B x B
4 2 3 im2anan9 Tr A Tr B x A x B x A x B
5 1 4 syl5bi Tr A Tr B x A B x A x B
6 ssin x A x B x A B
7 5 6 syl6ib Tr A Tr B x A B x A B
8 7 ralrimiv Tr A Tr B x A B x A B
9 dftr3 Tr A B x A B x A B
10 8 9 sylibr Tr A Tr B Tr A B