Metamath Proof Explorer


Theorem trirecip

Description: The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014) (Revised by Mario Carneiro, 22-May-2014)

Ref Expression
Assertion trirecip k 2 k k + 1 = 2

Proof

Step Hyp Ref Expression
1 2cnd k 2
2 peano2nn k k + 1
3 nnmulcl k k + 1 k k + 1
4 2 3 mpdan k k k + 1
5 4 nncnd k k k + 1
6 4 nnne0d k k k + 1 0
7 1 5 6 divrecd k 2 k k + 1 = 2 1 k k + 1
8 7 sumeq2i k 2 k k + 1 = k 2 1 k k + 1
9 nnuz = 1
10 1zzd 1
11 id n = k n = k
12 oveq1 n = k n + 1 = k + 1
13 11 12 oveq12d n = k n n + 1 = k k + 1
14 13 oveq2d n = k 1 n n + 1 = 1 k k + 1
15 eqid n 1 n n + 1 = n 1 n n + 1
16 ovex 1 k k + 1 V
17 14 15 16 fvmpt k n 1 n n + 1 k = 1 k k + 1
18 17 adantl k n 1 n n + 1 k = 1 k k + 1
19 4 nnrecred k 1 k k + 1
20 19 recnd k 1 k k + 1
21 20 adantl k 1 k k + 1
22 15 trireciplem seq 1 + n 1 n n + 1 1
23 22 a1i seq 1 + n 1 n n + 1 1
24 climrel Rel
25 24 releldmi seq 1 + n 1 n n + 1 1 seq 1 + n 1 n n + 1 dom
26 23 25 syl seq 1 + n 1 n n + 1 dom
27 2cnd 2
28 9 10 18 21 26 27 isummulc2 2 k 1 k k + 1 = k 2 1 k k + 1
29 9 10 18 21 23 isumclim k 1 k k + 1 = 1
30 29 oveq2d 2 k 1 k k + 1 = 2 1
31 28 30 eqtr3d k 2 1 k k + 1 = 2 1
32 31 mptru k 2 1 k k + 1 = 2 1
33 2t1e2 2 1 = 2
34 8 32 33 3eqtri k 2 k k + 1 = 2