Step |
Hyp |
Ref |
Expression |
1 |
|
2cnd |
|
2 |
|
peano2nn |
|
3 |
|
nnmulcl |
|
4 |
2 3
|
mpdan |
|
5 |
4
|
nncnd |
|
6 |
4
|
nnne0d |
|
7 |
1 5 6
|
divrecd |
|
8 |
7
|
sumeq2i |
|
9 |
|
nnuz |
|
10 |
|
1zzd |
|
11 |
|
id |
|
12 |
|
oveq1 |
|
13 |
11 12
|
oveq12d |
|
14 |
13
|
oveq2d |
|
15 |
|
eqid |
|
16 |
|
ovex |
|
17 |
14 15 16
|
fvmpt |
|
18 |
17
|
adantl |
|
19 |
4
|
nnrecred |
|
20 |
19
|
recnd |
|
21 |
20
|
adantl |
|
22 |
15
|
trireciplem |
|
23 |
22
|
a1i |
|
24 |
|
climrel |
|
25 |
24
|
releldmi |
|
26 |
23 25
|
syl |
|
27 |
|
2cnd |
|
28 |
9 10 18 21 26 27
|
isummulc2 |
|
29 |
9 10 18 21 23
|
isumclim |
|
30 |
29
|
oveq2d |
|
31 |
28 30
|
eqtr3d |
|
32 |
31
|
mptru |
|
33 |
|
2t1e2 |
|
34 |
8 32 33
|
3eqtri |
|