Step |
Hyp |
Ref |
Expression |
1 |
|
trireciplem.1 |
|
2 |
|
nnuz |
|
3 |
|
1zzd |
|
4 |
|
1cnd |
|
5 |
|
nnex |
|
6 |
5
|
mptex |
|
7 |
6
|
a1i |
|
8 |
|
oveq1 |
|
9 |
8
|
oveq2d |
|
10 |
|
eqid |
|
11 |
|
ovex |
|
12 |
9 10 11
|
fvmpt |
|
13 |
12
|
adantl |
|
14 |
2 3 4 3 7 13
|
divcnvshft |
|
15 |
|
seqex |
|
16 |
15
|
a1i |
|
17 |
|
peano2nn |
|
18 |
17
|
adantl |
|
19 |
18
|
nnrecred |
|
20 |
19
|
recnd |
|
21 |
13 20
|
eqeltrd |
|
22 |
13
|
oveq2d |
|
23 |
|
elfznn |
|
24 |
23
|
adantl |
|
25 |
24
|
nncnd |
|
26 |
|
peano2cn |
|
27 |
25 26
|
syl |
|
28 |
|
peano2nn |
|
29 |
24 28
|
syl |
|
30 |
24 29
|
nnmulcld |
|
31 |
30
|
nncnd |
|
32 |
30
|
nnne0d |
|
33 |
27 25 31 32
|
divsubdird |
|
34 |
|
ax-1cn |
|
35 |
|
pncan2 |
|
36 |
25 34 35
|
sylancl |
|
37 |
36
|
oveq1d |
|
38 |
27
|
mulid1d |
|
39 |
27 25
|
mulcomd |
|
40 |
38 39
|
oveq12d |
|
41 |
|
1cnd |
|
42 |
24
|
nnne0d |
|
43 |
29
|
nnne0d |
|
44 |
41 25 27 42 43
|
divcan5d |
|
45 |
40 44
|
eqtr3d |
|
46 |
25
|
mulid1d |
|
47 |
46
|
oveq1d |
|
48 |
41 27 25 43 42
|
divcan5d |
|
49 |
47 48
|
eqtr3d |
|
50 |
45 49
|
oveq12d |
|
51 |
33 37 50
|
3eqtr3d |
|
52 |
51
|
sumeq2dv |
|
53 |
|
oveq2 |
|
54 |
|
oveq2 |
|
55 |
|
oveq2 |
|
56 |
|
1div1e1 |
|
57 |
55 56
|
eqtrdi |
|
58 |
|
oveq2 |
|
59 |
|
nnz |
|
60 |
59
|
adantl |
|
61 |
18 2
|
eleqtrdi |
|
62 |
|
elfznn |
|
63 |
62
|
adantl |
|
64 |
63
|
nnrecred |
|
65 |
64
|
recnd |
|
66 |
53 54 57 58 60 61 65
|
telfsum |
|
67 |
52 66
|
eqtrd |
|
68 |
|
id |
|
69 |
|
oveq1 |
|
70 |
68 69
|
oveq12d |
|
71 |
70
|
oveq2d |
|
72 |
|
ovex |
|
73 |
71 1 72
|
fvmpt |
|
74 |
24 73
|
syl |
|
75 |
|
simpr |
|
76 |
75 2
|
eleqtrdi |
|
77 |
30
|
nnrecred |
|
78 |
77
|
recnd |
|
79 |
74 76 78
|
fsumser |
|
80 |
22 67 79
|
3eqtr2rd |
|
81 |
2 3 14 4 16 21 80
|
climsubc2 |
|
82 |
81
|
mptru |
|
83 |
|
1m0e1 |
|
84 |
82 83
|
breqtri |
|