Metamath Proof Explorer


Theorem trkgitv

Description: The congruence relation in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)

Ref Expression
Hypothesis trkgstr.w W = Base ndx U dist ndx D Itv ndx I
Assertion trkgitv I V I = Itv W

Proof

Step Hyp Ref Expression
1 trkgstr.w W = Base ndx U dist ndx D Itv ndx I
2 1 trkgstr W Struct 1 16
3 itvid Itv = Slot Itv ndx
4 snsstp3 Itv ndx I Base ndx U dist ndx D Itv ndx I
5 4 1 sseqtrri Itv ndx I W
6 2 3 5 strfv I V I = Itv W