Metamath Proof Explorer


Theorem trkgstr

Description: Functionality of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)

Ref Expression
Hypothesis trkgstr.w W = Base ndx U dist ndx D Itv ndx I
Assertion trkgstr W Struct 1 16

Proof

Step Hyp Ref Expression
1 trkgstr.w W = Base ndx U dist ndx D Itv ndx I
2 1nn 1
3 basendx Base ndx = 1
4 2nn0 2 0
5 1nn0 1 0
6 1lt10 1 < 10
7 2 4 5 6 declti 1 < 12
8 2nn 2
9 5 8 decnncl 12
10 dsndx dist ndx = 12
11 6nn 6
12 2lt6 2 < 6
13 5 4 11 12 declt 12 < 16
14 5 11 decnncl 16
15 itvndx Itv ndx = 16
16 2 3 7 9 10 13 14 15 strle3 Base ndx U dist ndx D Itv ndx I Struct 1 16
17 1 16 eqbrtri W Struct 1 16