Metamath Proof Explorer


Theorem trl0

Description: If an atom not under the fiducial co-atom W equals its lattice translation, the trace of the translation is zero. (Contributed by NM, 24-May-2012)

Ref Expression
Hypotheses trl0.l ˙ = K
trl0.z 0 ˙ = 0. K
trl0.a A = Atoms K
trl0.h H = LHyp K
trl0.t T = LTrn K W
trl0.r R = trL K W
Assertion trl0 K HL W H P A ¬ P ˙ W F T F P = P R F = 0 ˙

Proof

Step Hyp Ref Expression
1 trl0.l ˙ = K
2 trl0.z 0 ˙ = 0. K
3 trl0.a A = Atoms K
4 trl0.h H = LHyp K
5 trl0.t T = LTrn K W
6 trl0.r R = trL K W
7 simp1 K HL W H P A ¬ P ˙ W F T F P = P K HL W H
8 simp3l K HL W H P A ¬ P ˙ W F T F P = P F T
9 simp2 K HL W H P A ¬ P ˙ W F T F P = P P A ¬ P ˙ W
10 eqid join K = join K
11 eqid meet K = meet K
12 1 10 11 3 4 5 6 trlval2 K HL W H F T P A ¬ P ˙ W R F = P join K F P meet K W
13 7 8 9 12 syl3anc K HL W H P A ¬ P ˙ W F T F P = P R F = P join K F P meet K W
14 simp3r K HL W H P A ¬ P ˙ W F T F P = P F P = P
15 14 oveq2d K HL W H P A ¬ P ˙ W F T F P = P P join K F P = P join K P
16 simp1l K HL W H P A ¬ P ˙ W F T F P = P K HL
17 simp2l K HL W H P A ¬ P ˙ W F T F P = P P A
18 10 3 hlatjidm K HL P A P join K P = P
19 16 17 18 syl2anc K HL W H P A ¬ P ˙ W F T F P = P P join K P = P
20 15 19 eqtrd K HL W H P A ¬ P ˙ W F T F P = P P join K F P = P
21 20 oveq1d K HL W H P A ¬ P ˙ W F T F P = P P join K F P meet K W = P meet K W
22 1 11 2 3 4 lhpmat K HL W H P A ¬ P ˙ W P meet K W = 0 ˙
23 7 9 22 syl2anc K HL W H P A ¬ P ˙ W F T F P = P P meet K W = 0 ˙
24 13 21 23 3eqtrd K HL W H P A ¬ P ˙ W F T F P = P R F = 0 ˙