| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trl0a.z |
|
| 2 |
|
trl0a.a |
|
| 3 |
|
trl0a.h |
|
| 4 |
|
trl0a.t |
|
| 5 |
|
trl0a.r |
|
| 6 |
|
df-ne |
|
| 7 |
|
eqid |
|
| 8 |
7 2 3
|
lhpexnle |
|
| 9 |
8
|
ad2antrr |
|
| 10 |
|
simplll |
|
| 11 |
|
simpr |
|
| 12 |
|
simpllr |
|
| 13 |
|
simplr |
|
| 14 |
10
|
adantr |
|
| 15 |
|
simplr |
|
| 16 |
12
|
adantr |
|
| 17 |
|
simpr |
|
| 18 |
7 1 2 3 4 5
|
trl0 |
|
| 19 |
14 15 16 17 18
|
syl112anc |
|
| 20 |
19
|
ex |
|
| 21 |
20
|
necon3d |
|
| 22 |
13 21
|
mpd |
|
| 23 |
7 2 3 4 5
|
trlat |
|
| 24 |
10 11 12 22 23
|
syl112anc |
|
| 25 |
9 24
|
rexlimddv |
|
| 26 |
25
|
ex |
|
| 27 |
6 26
|
biimtrrid |
|
| 28 |
27
|
orrd |
|
| 29 |
28
|
orcomd |
|