Metamath Proof Explorer


Theorem trlator0

Description: The trace of a lattice translation is an atom or zero. (Contributed by NM, 5-May-2013)

Ref Expression
Hypotheses trl0a.z 0 ˙ = 0. K
trl0a.a A = Atoms K
trl0a.h H = LHyp K
trl0a.t T = LTrn K W
trl0a.r R = trL K W
Assertion trlator0 K HL W H F T R F A R F = 0 ˙

Proof

Step Hyp Ref Expression
1 trl0a.z 0 ˙ = 0. K
2 trl0a.a A = Atoms K
3 trl0a.h H = LHyp K
4 trl0a.t T = LTrn K W
5 trl0a.r R = trL K W
6 df-ne R F 0 ˙ ¬ R F = 0 ˙
7 eqid K = K
8 7 2 3 lhpexnle K HL W H p A ¬ p K W
9 8 ad2antrr K HL W H F T R F 0 ˙ p A ¬ p K W
10 simplll K HL W H F T R F 0 ˙ p A ¬ p K W K HL W H
11 simpr K HL W H F T R F 0 ˙ p A ¬ p K W p A ¬ p K W
12 simpllr K HL W H F T R F 0 ˙ p A ¬ p K W F T
13 simplr K HL W H F T R F 0 ˙ p A ¬ p K W R F 0 ˙
14 10 adantr K HL W H F T R F 0 ˙ p A ¬ p K W F p = p K HL W H
15 simplr K HL W H F T R F 0 ˙ p A ¬ p K W F p = p p A ¬ p K W
16 12 adantr K HL W H F T R F 0 ˙ p A ¬ p K W F p = p F T
17 simpr K HL W H F T R F 0 ˙ p A ¬ p K W F p = p F p = p
18 7 1 2 3 4 5 trl0 K HL W H p A ¬ p K W F T F p = p R F = 0 ˙
19 14 15 16 17 18 syl112anc K HL W H F T R F 0 ˙ p A ¬ p K W F p = p R F = 0 ˙
20 19 ex K HL W H F T R F 0 ˙ p A ¬ p K W F p = p R F = 0 ˙
21 20 necon3d K HL W H F T R F 0 ˙ p A ¬ p K W R F 0 ˙ F p p
22 13 21 mpd K HL W H F T R F 0 ˙ p A ¬ p K W F p p
23 7 2 3 4 5 trlat K HL W H p A ¬ p K W F T F p p R F A
24 10 11 12 22 23 syl112anc K HL W H F T R F 0 ˙ p A ¬ p K W R F A
25 9 24 rexlimddv K HL W H F T R F 0 ˙ R F A
26 25 ex K HL W H F T R F 0 ˙ R F A
27 6 26 syl5bir K HL W H F T ¬ R F = 0 ˙ R F A
28 27 orrd K HL W H F T R F = 0 ˙ R F A
29 28 orcomd K HL W H F T R F A R F = 0 ˙