Metamath Proof Explorer


Theorem trlcl

Description: Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012)

Ref Expression
Hypotheses trlcl.b B = Base K
trlcl.h H = LHyp K
trlcl.t T = LTrn K W
trlcl.r R = trL K W
Assertion trlcl K HL W H F T R F B

Proof

Step Hyp Ref Expression
1 trlcl.b B = Base K
2 trlcl.h H = LHyp K
3 trlcl.t T = LTrn K W
4 trlcl.r R = trL K W
5 eqid K = K
6 eqid oc K = oc K
7 eqid Atoms K = Atoms K
8 5 6 7 2 lhpocnel K HL W H oc K W Atoms K ¬ oc K W K W
9 8 adantr K HL W H F T oc K W Atoms K ¬ oc K W K W
10 eqid join K = join K
11 eqid meet K = meet K
12 5 10 11 7 2 3 4 trlval2 K HL W H F T oc K W Atoms K ¬ oc K W K W R F = oc K W join K F oc K W meet K W
13 9 12 mpd3an3 K HL W H F T R F = oc K W join K F oc K W meet K W
14 hllat K HL K Lat
15 14 ad2antrr K HL W H F T K Lat
16 hlop K HL K OP
17 16 ad2antrr K HL W H F T K OP
18 1 2 lhpbase W H W B
19 18 ad2antlr K HL W H F T W B
20 1 6 opoccl K OP W B oc K W B
21 17 19 20 syl2anc K HL W H F T oc K W B
22 1 2 3 ltrncl K HL W H F T oc K W B F oc K W B
23 21 22 mpd3an3 K HL W H F T F oc K W B
24 1 10 latjcl K Lat oc K W B F oc K W B oc K W join K F oc K W B
25 15 21 23 24 syl3anc K HL W H F T oc K W join K F oc K W B
26 1 11 latmcl K Lat oc K W join K F oc K W B W B oc K W join K F oc K W meet K W B
27 15 25 19 26 syl3anc K HL W H F T oc K W join K F oc K W meet K W B
28 13 27 eqeltrd K HL W H F T R F B