Metamath Proof Explorer


Theorem trlcnv

Description: The trace of the converse of a lattice translation. (Contributed by NM, 10-May-2013)

Ref Expression
Hypotheses trlcnv.h H = LHyp K
trlcnv.t T = LTrn K W
trlcnv.r R = trL K W
Assertion trlcnv K HL W H F T R F -1 = R F

Proof

Step Hyp Ref Expression
1 trlcnv.h H = LHyp K
2 trlcnv.t T = LTrn K W
3 trlcnv.r R = trL K W
4 eqid K = K
5 eqid Atoms K = Atoms K
6 4 5 1 lhpexnle K HL W H p Atoms K ¬ p K W
7 6 adantr K HL W H F T p Atoms K ¬ p K W
8 eqid Base K = Base K
9 8 1 2 ltrn1o K HL W H F T F : Base K 1-1 onto Base K
10 9 3adant3 K HL W H F T p Atoms K ¬ p K W F : Base K 1-1 onto Base K
11 simp3l K HL W H F T p Atoms K ¬ p K W p Atoms K
12 8 5 atbase p Atoms K p Base K
13 11 12 syl K HL W H F T p Atoms K ¬ p K W p Base K
14 f1ocnvfv1 F : Base K 1-1 onto Base K p Base K F -1 F p = p
15 10 13 14 syl2anc K HL W H F T p Atoms K ¬ p K W F -1 F p = p
16 15 oveq2d K HL W H F T p Atoms K ¬ p K W F p join K F -1 F p = F p join K p
17 simp1l K HL W H F T p Atoms K ¬ p K W K HL
18 4 5 1 2 ltrnat K HL W H F T p Atoms K F p Atoms K
19 18 3adant3r K HL W H F T p Atoms K ¬ p K W F p Atoms K
20 eqid join K = join K
21 20 5 hlatjcom K HL F p Atoms K p Atoms K F p join K p = p join K F p
22 17 19 11 21 syl3anc K HL W H F T p Atoms K ¬ p K W F p join K p = p join K F p
23 16 22 eqtrd K HL W H F T p Atoms K ¬ p K W F p join K F -1 F p = p join K F p
24 23 oveq1d K HL W H F T p Atoms K ¬ p K W F p join K F -1 F p meet K W = p join K F p meet K W
25 simp1 K HL W H F T p Atoms K ¬ p K W K HL W H
26 1 2 ltrncnv K HL W H F T F -1 T
27 26 3adant3 K HL W H F T p Atoms K ¬ p K W F -1 T
28 4 5 1 2 ltrnel K HL W H F T p Atoms K ¬ p K W F p Atoms K ¬ F p K W
29 eqid meet K = meet K
30 4 20 29 5 1 2 3 trlval2 K HL W H F -1 T F p Atoms K ¬ F p K W R F -1 = F p join K F -1 F p meet K W
31 25 27 28 30 syl3anc K HL W H F T p Atoms K ¬ p K W R F -1 = F p join K F -1 F p meet K W
32 4 20 29 5 1 2 3 trlval2 K HL W H F T p Atoms K ¬ p K W R F = p join K F p meet K W
33 24 31 32 3eqtr4d K HL W H F T p Atoms K ¬ p K W R F -1 = R F
34 33 3expa K HL W H F T p Atoms K ¬ p K W R F -1 = R F
35 7 34 rexlimddv K HL W H F T R F -1 = R F