Metamath Proof Explorer


Theorem trlf1

Description: The enumeration F of a trail <. F , P >. is injective. (Contributed by AV, 20-Feb-2021) (Proof shortened by AV, 29-Oct-2021)

Ref Expression
Hypothesis trlf1.i I = iEdg G
Assertion trlf1 F Trails G P F : 0 ..^ F 1-1 dom I

Proof

Step Hyp Ref Expression
1 trlf1.i I = iEdg G
2 istrl F Trails G P F Walks G P Fun F -1
3 1 wlkf F Walks G P F Word dom I
4 wrdf F Word dom I F : 0 ..^ F dom I
5 df-f1 F : 0 ..^ F 1-1 dom I F : 0 ..^ F dom I Fun F -1
6 5 simplbi2 F : 0 ..^ F dom I Fun F -1 F : 0 ..^ F 1-1 dom I
7 3 4 6 3syl F Walks G P Fun F -1 F : 0 ..^ F 1-1 dom I
8 7 imp F Walks G P Fun F -1 F : 0 ..^ F 1-1 dom I
9 2 8 sylbi F Trails G P F : 0 ..^ F 1-1 dom I