Metamath Proof Explorer


Theorem trlfset

Description: The set of all traces of lattice translations for a lattice K . (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses trlset.b B = Base K
trlset.l ˙ = K
trlset.j ˙ = join K
trlset.m ˙ = meet K
trlset.a A = Atoms K
trlset.h H = LHyp K
Assertion trlfset K C trL K = w H f LTrn K w ι x B | p A ¬ p ˙ w x = p ˙ f p ˙ w

Proof

Step Hyp Ref Expression
1 trlset.b B = Base K
2 trlset.l ˙ = K
3 trlset.j ˙ = join K
4 trlset.m ˙ = meet K
5 trlset.a A = Atoms K
6 trlset.h H = LHyp K
7 elex K C K V
8 fveq2 k = K LHyp k = LHyp K
9 8 6 eqtr4di k = K LHyp k = H
10 fveq2 k = K LTrn k = LTrn K
11 10 fveq1d k = K LTrn k w = LTrn K w
12 fveq2 k = K Base k = Base K
13 12 1 eqtr4di k = K Base k = B
14 fveq2 k = K Atoms k = Atoms K
15 14 5 eqtr4di k = K Atoms k = A
16 fveq2 k = K k = K
17 16 2 eqtr4di k = K k = ˙
18 17 breqd k = K p k w p ˙ w
19 18 notbid k = K ¬ p k w ¬ p ˙ w
20 fveq2 k = K meet k = meet K
21 20 4 eqtr4di k = K meet k = ˙
22 fveq2 k = K join k = join K
23 22 3 eqtr4di k = K join k = ˙
24 23 oveqd k = K p join k f p = p ˙ f p
25 eqidd k = K w = w
26 21 24 25 oveq123d k = K p join k f p meet k w = p ˙ f p ˙ w
27 26 eqeq2d k = K x = p join k f p meet k w x = p ˙ f p ˙ w
28 19 27 imbi12d k = K ¬ p k w x = p join k f p meet k w ¬ p ˙ w x = p ˙ f p ˙ w
29 15 28 raleqbidv k = K p Atoms k ¬ p k w x = p join k f p meet k w p A ¬ p ˙ w x = p ˙ f p ˙ w
30 13 29 riotaeqbidv k = K ι x Base k | p Atoms k ¬ p k w x = p join k f p meet k w = ι x B | p A ¬ p ˙ w x = p ˙ f p ˙ w
31 11 30 mpteq12dv k = K f LTrn k w ι x Base k | p Atoms k ¬ p k w x = p join k f p meet k w = f LTrn K w ι x B | p A ¬ p ˙ w x = p ˙ f p ˙ w
32 9 31 mpteq12dv k = K w LHyp k f LTrn k w ι x Base k | p Atoms k ¬ p k w x = p join k f p meet k w = w H f LTrn K w ι x B | p A ¬ p ˙ w x = p ˙ f p ˙ w
33 df-trl trL = k V w LHyp k f LTrn k w ι x Base k | p Atoms k ¬ p k w x = p join k f p meet k w
34 32 33 6 mptfvmpt K V trL K = w H f LTrn K w ι x B | p A ¬ p ˙ w x = p ˙ f p ˙ w
35 7 34 syl K C trL K = w H f LTrn K w ι x B | p A ¬ p ˙ w x = p ˙ f p ˙ w