Metamath Proof Explorer


Theorem trlid0

Description: The trace of the identity translation is zero. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypotheses trlid0.b B = Base K
trlid0.z 0 ˙ = 0. K
trlid0.h H = LHyp K
trlid0.r R = trL K W
Assertion trlid0 K HL W H R I B = 0 ˙

Proof

Step Hyp Ref Expression
1 trlid0.b B = Base K
2 trlid0.z 0 ˙ = 0. K
3 trlid0.h H = LHyp K
4 trlid0.r R = trL K W
5 eqid K = K
6 eqid Atoms K = Atoms K
7 5 6 3 lhpexnle K HL W H p Atoms K ¬ p K W
8 simpl K HL W H p Atoms K ¬ p K W K HL W H
9 simpr K HL W H p Atoms K ¬ p K W p Atoms K ¬ p K W
10 eqid LTrn K W = LTrn K W
11 1 3 10 idltrn K HL W H I B LTrn K W
12 11 adantr K HL W H p Atoms K ¬ p K W I B LTrn K W
13 eqid I B = I B
14 1 5 6 3 10 ltrnideq K HL W H I B LTrn K W p Atoms K ¬ p K W I B = I B I B p = p
15 8 12 9 14 syl3anc K HL W H p Atoms K ¬ p K W I B = I B I B p = p
16 13 15 mpbii K HL W H p Atoms K ¬ p K W I B p = p
17 5 2 6 3 10 4 trl0 K HL W H p Atoms K ¬ p K W I B LTrn K W I B p = p R I B = 0 ˙
18 8 9 12 16 17 syl112anc K HL W H p Atoms K ¬ p K W R I B = 0 ˙
19 7 18 rexlimddv K HL W H R I B = 0 ˙