Metamath Proof Explorer


Theorem trljat1

Description: The value of a translation of an atom P not under the fiducial co-atom W , joined with trace. Equation above Lemma C in Crawley p. 112. TODO: shorten with atmod3i1 ? (Contributed by NM, 22-May-2012)

Ref Expression
Hypotheses trljat.l ˙ = K
trljat.j ˙ = join K
trljat.a A = Atoms K
trljat.h H = LHyp K
trljat.t T = LTrn K W
trljat.r R = trL K W
Assertion trljat1 K HL W H F T P A ¬ P ˙ W P ˙ R F = P ˙ F P

Proof

Step Hyp Ref Expression
1 trljat.l ˙ = K
2 trljat.j ˙ = join K
3 trljat.a A = Atoms K
4 trljat.h H = LHyp K
5 trljat.t T = LTrn K W
6 trljat.r R = trL K W
7 eqid meet K = meet K
8 1 2 7 3 4 5 6 trlval2 K HL W H F T P A ¬ P ˙ W R F = P ˙ F P meet K W
9 8 oveq1d K HL W H F T P A ¬ P ˙ W R F ˙ P = P ˙ F P meet K W ˙ P
10 simp1l K HL W H F T P A ¬ P ˙ W K HL
11 10 hllatd K HL W H F T P A ¬ P ˙ W K Lat
12 simp3l K HL W H F T P A ¬ P ˙ W P A
13 eqid Base K = Base K
14 13 3 atbase P A P Base K
15 12 14 syl K HL W H F T P A ¬ P ˙ W P Base K
16 13 4 5 6 trlcl K HL W H F T R F Base K
17 16 3adant3 K HL W H F T P A ¬ P ˙ W R F Base K
18 13 2 latjcom K Lat P Base K R F Base K P ˙ R F = R F ˙ P
19 11 15 17 18 syl3anc K HL W H F T P A ¬ P ˙ W P ˙ R F = R F ˙ P
20 13 4 5 ltrncl K HL W H F T P Base K F P Base K
21 15 20 syld3an3 K HL W H F T P A ¬ P ˙ W F P Base K
22 13 2 latjcl K Lat P Base K F P Base K P ˙ F P Base K
23 11 15 21 22 syl3anc K HL W H F T P A ¬ P ˙ W P ˙ F P Base K
24 simp1r K HL W H F T P A ¬ P ˙ W W H
25 13 4 lhpbase W H W Base K
26 24 25 syl K HL W H F T P A ¬ P ˙ W W Base K
27 13 1 2 latlej1 K Lat P Base K F P Base K P ˙ P ˙ F P
28 11 15 21 27 syl3anc K HL W H F T P A ¬ P ˙ W P ˙ P ˙ F P
29 13 1 2 7 3 atmod2i1 K HL P A P ˙ F P Base K W Base K P ˙ P ˙ F P P ˙ F P meet K W ˙ P = P ˙ F P meet K W ˙ P
30 10 12 23 26 28 29 syl131anc K HL W H F T P A ¬ P ˙ W P ˙ F P meet K W ˙ P = P ˙ F P meet K W ˙ P
31 eqid 1. K = 1. K
32 1 2 31 3 4 lhpjat1 K HL W H P A ¬ P ˙ W W ˙ P = 1. K
33 32 3adant2 K HL W H F T P A ¬ P ˙ W W ˙ P = 1. K
34 33 oveq2d K HL W H F T P A ¬ P ˙ W P ˙ F P meet K W ˙ P = P ˙ F P meet K 1. K
35 hlol K HL K OL
36 10 35 syl K HL W H F T P A ¬ P ˙ W K OL
37 13 7 31 olm11 K OL P ˙ F P Base K P ˙ F P meet K 1. K = P ˙ F P
38 36 23 37 syl2anc K HL W H F T P A ¬ P ˙ W P ˙ F P meet K 1. K = P ˙ F P
39 30 34 38 3eqtrrd K HL W H F T P A ¬ P ˙ W P ˙ F P = P ˙ F P meet K W ˙ P
40 9 19 39 3eqtr4d K HL W H F T P A ¬ P ˙ W P ˙ R F = P ˙ F P