Metamath Proof Explorer


Theorem trlne

Description: The trace of a lattice translation is not equal to any atom not under the fiducial co-atom W . Part of proof of Lemma C in Crawley p. 112. (Contributed by NM, 25-May-2012)

Ref Expression
Hypotheses trlne.l ˙ = K
trlne.a A = Atoms K
trlne.h H = LHyp K
trlne.t T = LTrn K W
trlne.r R = trL K W
Assertion trlne K HL W H F T P A ¬ P ˙ W P R F

Proof

Step Hyp Ref Expression
1 trlne.l ˙ = K
2 trlne.a A = Atoms K
3 trlne.h H = LHyp K
4 trlne.t T = LTrn K W
5 trlne.r R = trL K W
6 simp3r K HL W H F T P A ¬ P ˙ W ¬ P ˙ W
7 1 3 4 5 trlle K HL W H F T R F ˙ W
8 7 3adant3 K HL W H F T P A ¬ P ˙ W R F ˙ W
9 breq1 P = R F P ˙ W R F ˙ W
10 8 9 syl5ibrcom K HL W H F T P A ¬ P ˙ W P = R F P ˙ W
11 10 necon3bd K HL W H F T P A ¬ P ˙ W ¬ P ˙ W P R F
12 6 11 mpd K HL W H F T P A ¬ P ˙ W P R F