Metamath Proof Explorer


Theorem trlnidat

Description: The trace of a lattice translation other than the identity is an atom. Remark above Lemma C in Crawley p. 112. (Contributed by NM, 23-May-2012)

Ref Expression
Hypotheses trlnidat.b B = Base K
trlnidat.a A = Atoms K
trlnidat.h H = LHyp K
trlnidat.t T = LTrn K W
trlnidat.r R = trL K W
Assertion trlnidat K HL W H F T F I B R F A

Proof

Step Hyp Ref Expression
1 trlnidat.b B = Base K
2 trlnidat.a A = Atoms K
3 trlnidat.h H = LHyp K
4 trlnidat.t T = LTrn K W
5 trlnidat.r R = trL K W
6 eqid K = K
7 1 6 2 3 4 ltrnnid K HL W H F T F I B p A ¬ p K W F p p
8 simp11 K HL W H F T F I B p A ¬ p K W F p p K HL W H
9 simp2 K HL W H F T F I B p A ¬ p K W F p p p A
10 simp3l K HL W H F T F I B p A ¬ p K W F p p ¬ p K W
11 simp12 K HL W H F T F I B p A ¬ p K W F p p F T
12 simp3r K HL W H F T F I B p A ¬ p K W F p p F p p
13 6 2 3 4 5 trlat K HL W H p A ¬ p K W F T F p p R F A
14 8 9 10 11 12 13 syl122anc K HL W H F T F I B p A ¬ p K W F p p R F A
15 14 rexlimdv3a K HL W H F T F I B p A ¬ p K W F p p R F A
16 7 15 mpd K HL W H F T F I B R F A