Metamath Proof Explorer


Theorem trlnle

Description: The atom not under the fiducial co-atom W is not less than the trace of a lattice translation. Part of proof of Lemma C in Crawley p. 112. (Contributed by NM, 26-May-2012)

Ref Expression
Hypotheses trlne.l ˙ = K
trlne.a A = Atoms K
trlne.h H = LHyp K
trlne.t T = LTrn K W
trlne.r R = trL K W
Assertion trlnle K HL W H F T P A ¬ P ˙ W ¬ P ˙ R F

Proof

Step Hyp Ref Expression
1 trlne.l ˙ = K
2 trlne.a A = Atoms K
3 trlne.h H = LHyp K
4 trlne.t T = LTrn K W
5 trlne.r R = trL K W
6 simpl1l K HL W H F T P A ¬ P ˙ W F P = P K HL
7 hlatl K HL K AtLat
8 6 7 syl K HL W H F T P A ¬ P ˙ W F P = P K AtLat
9 simpl3l K HL W H F T P A ¬ P ˙ W F P = P P A
10 eqid 0. K = 0. K
11 1 10 2 atnle0 K AtLat P A ¬ P ˙ 0. K
12 8 9 11 syl2anc K HL W H F T P A ¬ P ˙ W F P = P ¬ P ˙ 0. K
13 simpl1 K HL W H F T P A ¬ P ˙ W F P = P K HL W H
14 simpl3 K HL W H F T P A ¬ P ˙ W F P = P P A ¬ P ˙ W
15 simpl2 K HL W H F T P A ¬ P ˙ W F P = P F T
16 simpr K HL W H F T P A ¬ P ˙ W F P = P F P = P
17 1 10 2 3 4 5 trl0 K HL W H P A ¬ P ˙ W F T F P = P R F = 0. K
18 13 14 15 16 17 syl112anc K HL W H F T P A ¬ P ˙ W F P = P R F = 0. K
19 18 breq2d K HL W H F T P A ¬ P ˙ W F P = P P ˙ R F P ˙ 0. K
20 12 19 mtbird K HL W H F T P A ¬ P ˙ W F P = P ¬ P ˙ R F
21 1 2 3 4 5 trlne K HL W H F T P A ¬ P ˙ W P R F
22 21 adantr K HL W H F T P A ¬ P ˙ W F P P P R F
23 simpl1l K HL W H F T P A ¬ P ˙ W F P P K HL
24 23 7 syl K HL W H F T P A ¬ P ˙ W F P P K AtLat
25 simpl3l K HL W H F T P A ¬ P ˙ W F P P P A
26 simpl1 K HL W H F T P A ¬ P ˙ W F P P K HL W H
27 simpl3 K HL W H F T P A ¬ P ˙ W F P P P A ¬ P ˙ W
28 simpl2 K HL W H F T P A ¬ P ˙ W F P P F T
29 simpr K HL W H F T P A ¬ P ˙ W F P P F P P
30 1 2 3 4 5 trlat K HL W H P A ¬ P ˙ W F T F P P R F A
31 26 27 28 29 30 syl112anc K HL W H F T P A ¬ P ˙ W F P P R F A
32 1 2 atncmp K AtLat P A R F A ¬ P ˙ R F P R F
33 24 25 31 32 syl3anc K HL W H F T P A ¬ P ˙ W F P P ¬ P ˙ R F P R F
34 22 33 mpbird K HL W H F T P A ¬ P ˙ W F P P ¬ P ˙ R F
35 20 34 pm2.61dane K HL W H F T P A ¬ P ˙ W ¬ P ˙ R F