Metamath Proof Explorer


Theorem trlontrl

Description: A trail is a trail between its endpoints. (Contributed by AV, 31-Jan-2021)

Ref Expression
Assertion trlontrl F Trails G P F P 0 TrailsOn G P F P

Proof

Step Hyp Ref Expression
1 trliswlk F Trails G P F Walks G P
2 wlkonwlk F Walks G P F P 0 WalksOn G P F P
3 1 2 syl F Trails G P F P 0 WalksOn G P F P
4 id F Trails G P F Trails G P
5 eqid Vtx G = Vtx G
6 5 wlkepvtx F Walks G P P 0 Vtx G P F Vtx G
7 wlkv F Walks G P G V F V P V
8 3simpc G V F V P V F V P V
9 8 anim2i P 0 Vtx G P F Vtx G G V F V P V P 0 Vtx G P F Vtx G F V P V
10 6 7 9 syl2anc F Walks G P P 0 Vtx G P F Vtx G F V P V
11 1 10 syl F Trails G P P 0 Vtx G P F Vtx G F V P V
12 5 istrlson P 0 Vtx G P F Vtx G F V P V F P 0 TrailsOn G P F P F P 0 WalksOn G P F P F Trails G P
13 11 12 syl F Trails G P F P 0 TrailsOn G P F P F P 0 WalksOn G P F P F Trails G P
14 3 4 13 mpbir2and F Trails G P F P 0 TrailsOn G P F P