Database
GRAPH THEORY
Walks, paths and cycles
Trails
trlontrl
Next ⟩
Paths and simple paths
Metamath Proof Explorer
Ascii
Unicode
Theorem
trlontrl
Description:
A trail is a trail between its endpoints.
(Contributed by
AV
, 31-Jan-2021)
Ref
Expression
Assertion
trlontrl
⊢
F
Trails
⁡
G
P
→
F
P
⁡
0
TrailsOn
⁡
G
P
⁡
F
P
Proof
Step
Hyp
Ref
Expression
1
trliswlk
⊢
F
Trails
⁡
G
P
→
F
Walks
⁡
G
P
2
wlkonwlk
⊢
F
Walks
⁡
G
P
→
F
P
⁡
0
WalksOn
⁡
G
P
⁡
F
P
3
1
2
syl
⊢
F
Trails
⁡
G
P
→
F
P
⁡
0
WalksOn
⁡
G
P
⁡
F
P
4
id
⊢
F
Trails
⁡
G
P
→
F
Trails
⁡
G
P
5
eqid
⊢
Vtx
⁡
G
=
Vtx
⁡
G
6
5
wlkepvtx
⊢
F
Walks
⁡
G
P
→
P
⁡
0
∈
Vtx
⁡
G
∧
P
⁡
F
∈
Vtx
⁡
G
7
wlkv
⊢
F
Walks
⁡
G
P
→
G
∈
V
∧
F
∈
V
∧
P
∈
V
8
3simpc
⊢
G
∈
V
∧
F
∈
V
∧
P
∈
V
→
F
∈
V
∧
P
∈
V
9
8
anim2i
⊢
P
⁡
0
∈
Vtx
⁡
G
∧
P
⁡
F
∈
Vtx
⁡
G
∧
G
∈
V
∧
F
∈
V
∧
P
∈
V
→
P
⁡
0
∈
Vtx
⁡
G
∧
P
⁡
F
∈
Vtx
⁡
G
∧
F
∈
V
∧
P
∈
V
10
6
7
9
syl2anc
⊢
F
Walks
⁡
G
P
→
P
⁡
0
∈
Vtx
⁡
G
∧
P
⁡
F
∈
Vtx
⁡
G
∧
F
∈
V
∧
P
∈
V
11
1
10
syl
⊢
F
Trails
⁡
G
P
→
P
⁡
0
∈
Vtx
⁡
G
∧
P
⁡
F
∈
Vtx
⁡
G
∧
F
∈
V
∧
P
∈
V
12
5
istrlson
⊢
P
⁡
0
∈
Vtx
⁡
G
∧
P
⁡
F
∈
Vtx
⁡
G
∧
F
∈
V
∧
P
∈
V
→
F
P
⁡
0
TrailsOn
⁡
G
P
⁡
F
P
↔
F
P
⁡
0
WalksOn
⁡
G
P
⁡
F
P
∧
F
Trails
⁡
G
P
13
11
12
syl
⊢
F
Trails
⁡
G
P
→
F
P
⁡
0
TrailsOn
⁡
G
P
⁡
F
P
↔
F
P
⁡
0
WalksOn
⁡
G
P
⁡
F
P
∧
F
Trails
⁡
G
P
14
3
4
13
mpbir2and
⊢
F
Trails
⁡
G
P
→
F
P
⁡
0
TrailsOn
⁡
G
P
⁡
F
P