Metamath Proof Explorer


Theorem trlres

Description: The restriction <. H , Q >. of a trail <. F , P >. to an initial segment of the trail (of length N ) forms a trail on the subgraph S consisting of the edges in the initial segment. (Contributed by AV, 6-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)

Ref Expression
Hypotheses trlres.v V = Vtx G
trlres.i I = iEdg G
trlres.d φ F Trails G P
trlres.n φ N 0 ..^ F
trlres.h H = F prefix N
trlres.s φ Vtx S = V
trlres.e φ iEdg S = I F 0 ..^ N
trlres.q Q = P 0 N
Assertion trlres φ H Trails S Q

Proof

Step Hyp Ref Expression
1 trlres.v V = Vtx G
2 trlres.i I = iEdg G
3 trlres.d φ F Trails G P
4 trlres.n φ N 0 ..^ F
5 trlres.h H = F prefix N
6 trlres.s φ Vtx S = V
7 trlres.e φ iEdg S = I F 0 ..^ N
8 trlres.q Q = P 0 N
9 trliswlk F Trails G P F Walks G P
10 3 9 syl φ F Walks G P
11 1 2 10 4 6 7 5 8 wlkres φ H Walks S Q
12 1 2 3 4 5 trlreslem φ H : 0 ..^ H 1-1 onto dom I F 0 ..^ N
13 f1of1 H : 0 ..^ H 1-1 onto dom I F 0 ..^ N H : 0 ..^ H 1-1 dom I F 0 ..^ N
14 df-f1 H : 0 ..^ H 1-1 dom I F 0 ..^ N H : 0 ..^ H dom I F 0 ..^ N Fun H -1
15 14 simprbi H : 0 ..^ H 1-1 dom I F 0 ..^ N Fun H -1
16 12 13 15 3syl φ Fun H -1
17 istrl H Trails S Q H Walks S Q Fun H -1
18 11 16 17 sylanbrc φ H Trails S Q