Metamath Proof Explorer


Theorem trlreslem

Description: Lemma for trlres . Formerly part of proof of eupthres . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 3-May-2015) (Revised by AV, 6-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)

Ref Expression
Hypotheses trlres.v V = Vtx G
trlres.i I = iEdg G
trlres.d φ F Trails G P
trlres.n φ N 0 ..^ F
trlres.h H = F prefix N
Assertion trlreslem φ H : 0 ..^ H 1-1 onto dom I F 0 ..^ N

Proof

Step Hyp Ref Expression
1 trlres.v V = Vtx G
2 trlres.i I = iEdg G
3 trlres.d φ F Trails G P
4 trlres.n φ N 0 ..^ F
5 trlres.h H = F prefix N
6 2 trlf1 F Trails G P F : 0 ..^ F 1-1 dom I
7 3 6 syl φ F : 0 ..^ F 1-1 dom I
8 elfzouz2 N 0 ..^ F F N
9 fzoss2 F N 0 ..^ N 0 ..^ F
10 4 8 9 3syl φ 0 ..^ N 0 ..^ F
11 f1ores F : 0 ..^ F 1-1 dom I 0 ..^ N 0 ..^ F F 0 ..^ N : 0 ..^ N 1-1 onto F 0 ..^ N
12 7 10 11 syl2anc φ F 0 ..^ N : 0 ..^ N 1-1 onto F 0 ..^ N
13 trliswlk F Trails G P F Walks G P
14 2 wlkf F Walks G P F Word dom I
15 3 13 14 3syl φ F Word dom I
16 fzossfz 0 ..^ F 0 F
17 16 4 sselid φ N 0 F
18 pfxres F Word dom I N 0 F F prefix N = F 0 ..^ N
19 15 17 18 syl2anc φ F prefix N = F 0 ..^ N
20 5 19 syl5eq φ H = F 0 ..^ N
21 5 fveq2i H = F prefix N
22 elfzofz N 0 ..^ F N 0 F
23 4 22 syl φ N 0 F
24 pfxlen F Word dom I N 0 F F prefix N = N
25 15 23 24 syl2anc φ F prefix N = N
26 21 25 syl5eq φ H = N
27 26 oveq2d φ 0 ..^ H = 0 ..^ N
28 wrdf F Word dom I F : 0 ..^ F dom I
29 fimass F : 0 ..^ F dom I F 0 ..^ N dom I
30 14 28 29 3syl F Walks G P F 0 ..^ N dom I
31 3 13 30 3syl φ F 0 ..^ N dom I
32 ssdmres F 0 ..^ N dom I dom I F 0 ..^ N = F 0 ..^ N
33 31 32 sylib φ dom I F 0 ..^ N = F 0 ..^ N
34 20 27 33 f1oeq123d φ H : 0 ..^ H 1-1 onto dom I F 0 ..^ N F 0 ..^ N : 0 ..^ N 1-1 onto F 0 ..^ N
35 12 34 mpbird φ H : 0 ..^ H 1-1 onto dom I F 0 ..^ N