Metamath Proof Explorer


Theorem trlsegvdeglem1

Description: Lemma for trlsegvdeg . (Contributed by AV, 20-Feb-2021)

Ref Expression
Hypotheses trlsegvdeg.v V = Vtx G
trlsegvdeg.i I = iEdg G
trlsegvdeg.f φ Fun I
trlsegvdeg.n φ N 0 ..^ F
trlsegvdeg.u φ U V
trlsegvdeg.w φ F Trails G P
Assertion trlsegvdeglem1 φ P N V P N + 1 V

Proof

Step Hyp Ref Expression
1 trlsegvdeg.v V = Vtx G
2 trlsegvdeg.i I = iEdg G
3 trlsegvdeg.f φ Fun I
4 trlsegvdeg.n φ N 0 ..^ F
5 trlsegvdeg.u φ U V
6 trlsegvdeg.w φ F Trails G P
7 trliswlk F Trails G P F Walks G P
8 1 wlkpvtx F Walks G P N 0 F P N V
9 elfzofz N 0 ..^ F N 0 F
10 8 9 impel F Walks G P N 0 ..^ F P N V
11 1 wlkpvtx F Walks G P N + 1 0 F P N + 1 V
12 fzofzp1 N 0 ..^ F N + 1 0 F
13 11 12 impel F Walks G P N 0 ..^ F P N + 1 V
14 10 13 jca F Walks G P N 0 ..^ F P N V P N + 1 V
15 14 ex F Walks G P N 0 ..^ F P N V P N + 1 V
16 6 7 15 3syl φ N 0 ..^ F P N V P N + 1 V
17 4 16 mpd φ P N V P N + 1 V