Database
GRAPH THEORY
Eulerian paths and the Konigsberg Bridge problem
Eulerian paths
trlsegvdeglem1
Next ⟩
trlsegvdeglem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
trlsegvdeglem1
Description:
Lemma for
trlsegvdeg
.
(Contributed by
AV
, 20-Feb-2021)
Ref
Expression
Hypotheses
trlsegvdeg.v
⊢
V
=
Vtx
⁡
G
trlsegvdeg.i
⊢
I
=
iEdg
⁡
G
trlsegvdeg.f
⊢
φ
→
Fun
⁡
I
trlsegvdeg.n
⊢
φ
→
N
∈
0
..^
F
trlsegvdeg.u
⊢
φ
→
U
∈
V
trlsegvdeg.w
⊢
φ
→
F
Trails
⁡
G
P
Assertion
trlsegvdeglem1
⊢
φ
→
P
⁡
N
∈
V
∧
P
⁡
N
+
1
∈
V
Proof
Step
Hyp
Ref
Expression
1
trlsegvdeg.v
⊢
V
=
Vtx
⁡
G
2
trlsegvdeg.i
⊢
I
=
iEdg
⁡
G
3
trlsegvdeg.f
⊢
φ
→
Fun
⁡
I
4
trlsegvdeg.n
⊢
φ
→
N
∈
0
..^
F
5
trlsegvdeg.u
⊢
φ
→
U
∈
V
6
trlsegvdeg.w
⊢
φ
→
F
Trails
⁡
G
P
7
trliswlk
⊢
F
Trails
⁡
G
P
→
F
Walks
⁡
G
P
8
1
wlkpvtx
⊢
F
Walks
⁡
G
P
→
N
∈
0
…
F
→
P
⁡
N
∈
V
9
elfzofz
⊢
N
∈
0
..^
F
→
N
∈
0
…
F
10
8
9
impel
⊢
F
Walks
⁡
G
P
∧
N
∈
0
..^
F
→
P
⁡
N
∈
V
11
1
wlkpvtx
⊢
F
Walks
⁡
G
P
→
N
+
1
∈
0
…
F
→
P
⁡
N
+
1
∈
V
12
fzofzp1
⊢
N
∈
0
..^
F
→
N
+
1
∈
0
…
F
13
11
12
impel
⊢
F
Walks
⁡
G
P
∧
N
∈
0
..^
F
→
P
⁡
N
+
1
∈
V
14
10
13
jca
⊢
F
Walks
⁡
G
P
∧
N
∈
0
..^
F
→
P
⁡
N
∈
V
∧
P
⁡
N
+
1
∈
V
15
14
ex
⊢
F
Walks
⁡
G
P
→
N
∈
0
..^
F
→
P
⁡
N
∈
V
∧
P
⁡
N
+
1
∈
V
16
6
7
15
3syl
⊢
φ
→
N
∈
0
..^
F
→
P
⁡
N
∈
V
∧
P
⁡
N
+
1
∈
V
17
4
16
mpd
⊢
φ
→
P
⁡
N
∈
V
∧
P
⁡
N
+
1
∈
V