Database
GRAPH THEORY
Eulerian paths and the Konigsberg Bridge problem
Eulerian paths
trlsegvdeglem4
Next ⟩
trlsegvdeglem5
Metamath Proof Explorer
Ascii
Unicode
Theorem
trlsegvdeglem4
Description:
Lemma for
trlsegvdeg
.
(Contributed by
AV
, 21-Feb-2021)
Ref
Expression
Hypotheses
trlsegvdeg.v
⊢
V
=
Vtx
⁡
G
trlsegvdeg.i
⊢
I
=
iEdg
⁡
G
trlsegvdeg.f
⊢
φ
→
Fun
⁡
I
trlsegvdeg.n
⊢
φ
→
N
∈
0
..^
F
trlsegvdeg.u
⊢
φ
→
U
∈
V
trlsegvdeg.w
⊢
φ
→
F
Trails
⁡
G
P
trlsegvdeg.vx
⊢
φ
→
Vtx
⁡
X
=
V
trlsegvdeg.vy
⊢
φ
→
Vtx
⁡
Y
=
V
trlsegvdeg.vz
⊢
φ
→
Vtx
⁡
Z
=
V
trlsegvdeg.ix
⊢
φ
→
iEdg
⁡
X
=
I
↾
F
0
..^
N
trlsegvdeg.iy
⊢
φ
→
iEdg
⁡
Y
=
F
⁡
N
I
⁡
F
⁡
N
trlsegvdeg.iz
⊢
φ
→
iEdg
⁡
Z
=
I
↾
F
0
…
N
Assertion
trlsegvdeglem4
⊢
φ
→
dom
⁡
iEdg
⁡
X
=
F
0
..^
N
∩
dom
⁡
I
Proof
Step
Hyp
Ref
Expression
1
trlsegvdeg.v
⊢
V
=
Vtx
⁡
G
2
trlsegvdeg.i
⊢
I
=
iEdg
⁡
G
3
trlsegvdeg.f
⊢
φ
→
Fun
⁡
I
4
trlsegvdeg.n
⊢
φ
→
N
∈
0
..^
F
5
trlsegvdeg.u
⊢
φ
→
U
∈
V
6
trlsegvdeg.w
⊢
φ
→
F
Trails
⁡
G
P
7
trlsegvdeg.vx
⊢
φ
→
Vtx
⁡
X
=
V
8
trlsegvdeg.vy
⊢
φ
→
Vtx
⁡
Y
=
V
9
trlsegvdeg.vz
⊢
φ
→
Vtx
⁡
Z
=
V
10
trlsegvdeg.ix
⊢
φ
→
iEdg
⁡
X
=
I
↾
F
0
..^
N
11
trlsegvdeg.iy
⊢
φ
→
iEdg
⁡
Y
=
F
⁡
N
I
⁡
F
⁡
N
12
trlsegvdeg.iz
⊢
φ
→
iEdg
⁡
Z
=
I
↾
F
0
…
N
13
10
dmeqd
⊢
φ
→
dom
⁡
iEdg
⁡
X
=
dom
⁡
I
↾
F
0
..^
N
14
dmres
⊢
dom
⁡
I
↾
F
0
..^
N
=
F
0
..^
N
∩
dom
⁡
I
15
13
14
eqtrdi
⊢
φ
→
dom
⁡
iEdg
⁡
X
=
F
0
..^
N
∩
dom
⁡
I