Metamath Proof Explorer


Theorem trlsonfval

Description: The set of trails between two vertices. (Contributed by Alexander van der Vekens, 4-Nov-2017) (Revised by AV, 7-Jan-2021) (Proof shortened by AV, 15-Jan-2021) (Revised by AV, 21-Mar-2021)

Ref Expression
Hypothesis trlsonfval.v V = Vtx G
Assertion trlsonfval A V B V A TrailsOn G B = f p | f A WalksOn G B p f Trails G p

Proof

Step Hyp Ref Expression
1 trlsonfval.v V = Vtx G
2 1 1vgrex A V G V
3 2 adantr A V B V G V
4 simpl A V B V A V
5 4 1 eleqtrdi A V B V A Vtx G
6 simpr A V B V B V
7 6 1 eleqtrdi A V B V B Vtx G
8 wksv f p | f Walks G p V
9 8 a1i A V B V f p | f Walks G p V
10 trliswlk f Trails G p f Walks G p
11 10 adantl A V B V f Trails G p f Walks G p
12 df-trlson TrailsOn = g V a Vtx g , b Vtx g f p | f a WalksOn g b p f Trails g p
13 3 5 7 9 11 12 mptmpoopabovd A V B V A TrailsOn G B = f p | f A WalksOn G B p f Trails G p