Metamath Proof Explorer


Theorem trlsonprop

Description: Properties of a trail between two vertices. (Contributed by Alexander van der Vekens, 5-Nov-2017) (Revised by AV, 7-Jan-2021) (Proof shortened by AV, 16-Jan-2021)

Ref Expression
Hypothesis trlsonfval.v V = Vtx G
Assertion trlsonprop F A TrailsOn G B P G V A V B V F V P V F A WalksOn G B P F Trails G P

Proof

Step Hyp Ref Expression
1 trlsonfval.v V = Vtx G
2 1 istrlson A V B V F V P V F A TrailsOn G B P F A WalksOn G B P F Trails G P
3 2 3adantl1 G V A V B V F V P V F A TrailsOn G B P F A WalksOn G B P F Trails G P
4 df-trlson TrailsOn = g V a Vtx g , b Vtx g f p | f a WalksOn g b p f Trails g p
5 trliswlk f Trails G p f Walks G p
6 5 adantl G V A V B V f Trails G p f Walks G p
7 1 3 4 6 wksonproplem F A TrailsOn G B P G V A V B V F V P V F A WalksOn G B P F Trails G P