Metamath Proof Explorer


Theorem trlval

Description: The value of the trace of a lattice translation. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses trlset.b B = Base K
trlset.l ˙ = K
trlset.j ˙ = join K
trlset.m ˙ = meet K
trlset.a A = Atoms K
trlset.h H = LHyp K
trlset.t T = LTrn K W
trlset.r R = trL K W
Assertion trlval K V W H F T R F = ι x B | p A ¬ p ˙ W x = p ˙ F p ˙ W

Proof

Step Hyp Ref Expression
1 trlset.b B = Base K
2 trlset.l ˙ = K
3 trlset.j ˙ = join K
4 trlset.m ˙ = meet K
5 trlset.a A = Atoms K
6 trlset.h H = LHyp K
7 trlset.t T = LTrn K W
8 trlset.r R = trL K W
9 1 2 3 4 5 6 7 8 trlset K V W H R = f T ι x B | p A ¬ p ˙ W x = p ˙ f p ˙ W
10 9 fveq1d K V W H R F = f T ι x B | p A ¬ p ˙ W x = p ˙ f p ˙ W F
11 fveq1 f = F f p = F p
12 11 oveq2d f = F p ˙ f p = p ˙ F p
13 12 oveq1d f = F p ˙ f p ˙ W = p ˙ F p ˙ W
14 13 eqeq2d f = F x = p ˙ f p ˙ W x = p ˙ F p ˙ W
15 14 imbi2d f = F ¬ p ˙ W x = p ˙ f p ˙ W ¬ p ˙ W x = p ˙ F p ˙ W
16 15 ralbidv f = F p A ¬ p ˙ W x = p ˙ f p ˙ W p A ¬ p ˙ W x = p ˙ F p ˙ W
17 16 riotabidv f = F ι x B | p A ¬ p ˙ W x = p ˙ f p ˙ W = ι x B | p A ¬ p ˙ W x = p ˙ F p ˙ W
18 eqid f T ι x B | p A ¬ p ˙ W x = p ˙ f p ˙ W = f T ι x B | p A ¬ p ˙ W x = p ˙ f p ˙ W
19 riotaex ι x B | p A ¬ p ˙ W x = p ˙ F p ˙ W V
20 17 18 19 fvmpt F T f T ι x B | p A ¬ p ˙ W x = p ˙ f p ˙ W F = ι x B | p A ¬ p ˙ W x = p ˙ F p ˙ W
21 10 20 sylan9eq K V W H F T R F = ι x B | p A ¬ p ˙ W x = p ˙ F p ˙ W